Skip to main content
Top
Published in: Acta Neurochirurgica 2/2010

Open Access 01-02-2010 | Experimental Research

Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study

Authors: Sven Rainer Kantelhardt, Tommaso Fadini, Markus Finke, Kai Kallenberg, Jakob Siemerkus, Volker Bockermann, Lars Matthaeus, Walter Paulus, Achim Schweikard, Veit Rohde, Alf Giese

Published in: Acta Neurochirurgica | Issue 2/2010

Login to get access

Abstract

Purpose

Shape and exact location of motor cortical areas varies among individuals. The exact knowledge of these locations is crucial for planning of neurosurgical procedures. In this study, we have used robot-assisted image-guided transcranial magnetic stimulation (Ri-TMS) to elicit MEP response recorded for individual muscles and reconstruct functional motor maps of the primary motor cortex.

Methods

One healthy volunteer and five patients with intracranial tumors neighboring the precentral gyrus were selected for this pilot study. Conventional MRI and fMRI were obtained. Transcranial magnetic stimulation was performed using a MagPro X100 stimulator and a standard figure-of-eight coil positioned by an Adept Viper s850 robot. The fMRI activation/Ri-TMS response pattern were compared. In two cases, Ri-TMS was additionally compared to intraoperative direct electrical cortical stimulation.

Results

Maximal MEP response of the m. abductor digiti minimi was located in an area corresponding to the “hand knob” of the precentral gyrus for both hemispheres. Repeated Ri-TMS measurements showed a high reproducibility. Simultaneous registration of the MEP response for m. brachioradialis, m. abductor pollicis brevis, and m. abductor digiti minimi demonstrated individual peak areas of maximal MEP response for the individual muscle groups. Ri-TMS mapping was compared to the corresponding fMRI studies. The areas of maximal MEP response localized within the “finger tapping” activated areas by fMRI in all six individuals.

Conclusions

Ri-TMS is suitable for high resolution non-invasive preoperative somatotopic mapping of the motor cortex. Ri-TMS may help in the planning of neurosurgical procedures and may be directly used in navigation systems.
Literature
1.
go back to reference Missir O, Dutheil-Desclercs C, Meder JF, Musolino A, Fredy D (1989) Central sulcus patterns at MRI. J Neuroradiol 16(2):133–144PubMed Missir O, Dutheil-Desclercs C, Meder JF, Musolino A, Fredy D (1989) Central sulcus patterns at MRI. J Neuroradiol 16(2):133–144PubMed
2.
go back to reference Penfield W, Boldry E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef Penfield W, Boldry E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443CrossRef
3.
go back to reference Lehéricy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, Auliac S, Clemenceau S, Sichez JP, Bitar A, Valery CA, Van Effenterre R, Faillot T, Srour A, Fohanno D, Philippon J, Le Bihan D, Marsault C (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598CrossRefPubMed Lehéricy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, Auliac S, Clemenceau S, Sichez JP, Bitar A, Valery CA, Van Effenterre R, Faillot T, Srour A, Fohanno D, Philippon J, Le Bihan D, Marsault C (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598CrossRefPubMed
4.
go back to reference Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47(2):79–88PubMed Sala F, Lanteri P (2003) Brain surgery in motor areas: the invaluable assistance of intraoperative neurophysiological monitoring. J Neurosurg Sci 47(2):79–88PubMed
5.
go back to reference Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2(5):501–505CrossRefPubMed Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2(5):501–505CrossRefPubMed
6.
go back to reference Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45(5):919–924PubMed Rao SM, Binder JR, Hammeke TA, Bandettini PA, Bobholz JA, Frost JA, Myklebust BM, Jacobson RD, Hyde JS (1995) Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging. Neurology 45(5):919–924PubMed
7.
go back to reference Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, Aquino D, Marras C, Caldiroli D, Broggi G (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589CrossRefPubMed Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, Aquino D, Marras C, Caldiroli D, Broggi G (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589CrossRefPubMed
8.
go back to reference Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91(2):238–250CrossRefPubMed Fandino J, Kollias SS, Wieser HG, Valavanis A, Yonekawa Y (1999) Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 91(2):238–250CrossRefPubMed
9.
go back to reference Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39(3):515–520CrossRefPubMed Mueller WM, Yetkin FZ, Hammeke TA, Morris GL 3rd, Swanson SJ, Reichert K, Cox R, Haughton VM (1996) Functional magnetic resonance imaging mapping of the motor cortex in patients with cerebral tumors. Neurosurgery 39(3):515–520CrossRefPubMed
10.
go back to reference Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66(3):735–743PubMed Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in humans: activation studies with cerebral blood flow and positron emission tomography. J Neurophysiol 66(3):735–743PubMed
11.
go back to reference Viñas FC, Zamorano L, Mueller RA, Jiang Z, Chugani H, Fuerst D, Muzik O, Mangner TJ, Diaz FG (1997) [15O]-water PET and intraoperative brain mapping: a comparison in the localization of eloquent cortex. Neurol Res 19(6):601–608PubMed Viñas FC, Zamorano L, Mueller RA, Jiang Z, Chugani H, Fuerst D, Muzik O, Mangner TJ, Diaz FG (1997) [15O]-water PET and intraoperative brain mapping: a comparison in the localization of eloquent cortex. Neurol Res 19(6):601–608PubMed
12.
go back to reference Cheyne D, Kristeva R, Deecke L (1991) Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett 122(1):17–20CrossRefPubMed Cheyne D, Kristeva R, Deecke L (1991) Homuncular organization of human motor cortex as indicated by neuromagnetic recordings. Neurosci Lett 122(1):17–20CrossRefPubMed
13.
go back to reference Lotze M, Kaethner RJ, Erb M, Cohen LG, Grodd W, Topka H (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114(2):306–312CrossRefPubMed Lotze M, Kaethner RJ, Erb M, Cohen LG, Grodd W, Topka H (2003) Comparison of representational maps using functional magnetic resonance imaging and transcranial magnetic stimulation. Clin Neurophysiol 114(2):306–312CrossRefPubMed
14.
go back to reference Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Rosen BR, Cosgrove GR (1997) Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery 41(6):1319–1325CrossRefPubMed Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Rosen BR, Cosgrove GR (1997) Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery 41(6):1319–1325CrossRefPubMed
15.
go back to reference Neggers SF, Langerak TR, Schutter DJ, Mandl RC, Ramsey NF, Lemmens PJ, Postma A (2004) A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage 21(4):1805–1817CrossRefPubMed Neggers SF, Langerak TR, Schutter DJ, Mandl RC, Ramsey NF, Lemmens PJ, Postma A (2004) A stereotactic method for image-guided transcranial magnetic stimulation validated with fMRI and motor-evoked potentials. Neuroimage 21(4):1805–1817CrossRefPubMed
16.
go back to reference Sparing R, Buelte D, Meister IG, Paus T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29(1):82–96CrossRefPubMed Sparing R, Buelte D, Meister IG, Paus T, Fink GR (2008) Transcranial magnetic stimulation and the challenge of coil placement: a comparison of conventional and stereotaxic neuronavigational strategies. Hum Brain Mapp 29(1):82–96CrossRefPubMed
17.
go back to reference Denslow S, Bohning DE, Bohning PA, Lomarev MP, George MS (2005) An increased precision comparison of TMS-induced motor cortex BOLD fMRI response for image-guided versus function-guided coil placement. Cogn Behav Neurol 18(2):119–126CrossRefPubMed Denslow S, Bohning DE, Bohning PA, Lomarev MP, George MS (2005) An increased precision comparison of TMS-induced motor cortex BOLD fMRI response for image-guided versus function-guided coil placement. Cogn Behav Neurol 18(2):119–126CrossRefPubMed
18.
go back to reference Matthäus L, Trillenberg P, Bodensteiner C, Giese A, Schweikard A (2006) Robotized TMS for motion compensated navigated brain stimulation. Presented at the 20th International Computer Assisted Radiology and Surgery Congress, Osaka, Japan, June 28–July 1. Matthäus L, Trillenberg P, Bodensteiner C, Giese A, Schweikard A (2006) Robotized TMS for motion compensated navigated brain stimulation. Presented at the 20th International Computer Assisted Radiology and Surgery Congress, Osaka, Japan, June 28–July 1.
19.
go back to reference Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642CrossRef Horn B (1987) Closed-form solution of absolute orientation using unit quaternions. J Opt Soc Am A 4(4):629–642CrossRef
20.
go back to reference Noirhomme Q, Ferrant M, Vandermeeren Y, Olivier E, Macq B, Cuisenaire O (2004) Registration and real-time visualization of transcranial magnetic stimulation with 3-d MR images. IEEE T Biomed E 51(11):1994–2005CrossRef Noirhomme Q, Ferrant M, Vandermeeren Y, Olivier E, Macq B, Cuisenaire O (2004) Registration and real-time visualization of transcranial magnetic stimulation with 3-d MR images. IEEE T Biomed E 51(11):1994–2005CrossRef
21.
go back to reference Matthäus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized TMS using virtual reality. Stud Health Technol Inform 119:373–378PubMed Matthäus L, Giese A, Wertheimer D, Schweikard A (2006) Planning and analyzing robotized TMS using virtual reality. Stud Health Technol Inform 119:373–378PubMed
22.
go back to reference Matthäus L, Trillenberg P, Fadini T, Finke M, Schweikard A (2008) Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall’s tau. Stat Med 27(25):5252–5270CrossRefPubMed Matthäus L, Trillenberg P, Fadini T, Finke M, Schweikard A (2008) Brain mapping with transcranial magnetic stimulation using a refined correlation ratio and Kendall’s tau. Stat Med 27(25):5252–5270CrossRefPubMed
23.
go back to reference Gumprecht H, Widenka D, Lumenta C (1999) BrainLab vectorvision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104CrossRefPubMed Gumprecht H, Widenka D, Lumenta C (1999) BrainLab vectorvision neuronavigation system: technology and clinical experiences in 131 cases. Neurosurgery 44(1):97–104CrossRefPubMed
24.
go back to reference Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112(2):250–258CrossRefPubMed Kammer T, Beck S, Thielscher A, Laubis-Herrmann U, Topka H (2001) Motor thresholds in humans: a transcranial magnetic stimulation study comparing different pulse waveforms, current directions and stimulator types. Clin Neurophysiol 112(2):250–258CrossRefPubMed
25.
go back to reference Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48(5):1406–1416PubMed Krings T, Buchbinder BR, Butler WE, Chiappa KH, Jiang HJ, Cosgrove GR, Rosen BR (1997) Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function. Neurology 48(5):1406–1416PubMed
26.
go back to reference Macdonell RA, Jackson GD, Curatolo JM, Abbott DF, Berkovic SF, Carey LM, Syngeniotin A, Fabinyi GC, Scheffer IE (1999) Motor cortex localization using functional MRI and transcranial magnetic stimulation. Neurology 53(7):1462–1467PubMed Macdonell RA, Jackson GD, Curatolo JM, Abbott DF, Berkovic SF, Carey LM, Syngeniotin A, Fabinyi GC, Scheffer IE (1999) Motor cortex localization using functional MRI and transcranial magnetic stimulation. Neurology 53(7):1462–1467PubMed
27.
go back to reference Niyazov DM, Butler AJ, Kadah YM, Epstein CM, Hu XP (2005) Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation. Clin Neurophysiol 116(7):1601–1610CrossRefPubMed Niyazov DM, Butler AJ, Kadah YM, Epstein CM, Hu XP (2005) Functional magnetic resonance imaging and transcranial magnetic stimulation: effects of motor imagery, movement and coil orientation. Clin Neurophysiol 116(7):1601–1610CrossRefPubMed
28.
go back to reference Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci USA 103(21):8257–8262CrossRefPubMed Rathelot JA, Strick PL (2006) Muscle representation in the macaque motor cortex: an anatomical perspective. Proc Natl Acad Sci USA 103(21):8257–8262CrossRefPubMed
29.
go back to reference Teitti S, Määttä S, Säisänen L, Könönen M, Vanninen R, Hannula H, Mervaala E, Karhu J (2008) Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage 40(3):1243–1250CrossRefPubMed Teitti S, Määttä S, Säisänen L, Könönen M, Vanninen R, Hannula H, Mervaala E, Karhu J (2008) Non-primary motor areas in the human frontal lobe are connected directly to hand muscles. Neuroimage 40(3):1243–1250CrossRefPubMed
30.
go back to reference Epstein CM, Meador KJ, Loring DW, Wright RJ, Weissman JD, Sheppard S, Lah JJ, Puhalovich F, Gaitan L, Davey KR (1999) Localization and characterization of speech arrest during transcranial magnetic stimulation. Clin Neurophysiol 110(6):1073–1079CrossRefPubMed Epstein CM, Meador KJ, Loring DW, Wright RJ, Weissman JD, Sheppard S, Lah JJ, Puhalovich F, Gaitan L, Davey KR (1999) Localization and characterization of speech arrest during transcranial magnetic stimulation. Clin Neurophysiol 110(6):1073–1079CrossRefPubMed
31.
go back to reference Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345CrossRefPubMed Roux FE, Boulanouar K, Lotterie JA, Mejdoubi M, LeSage JP, Berry I (2003) Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 52(6):1335–1345CrossRefPubMed
32.
go back to reference Seyal M, Masuoka LK, Browne JK (1992) Suppression of cutaneous perception by magnetic pulse stimulation of the human brain. Electroencephalogr Clin Neurophysiol 85(6):397–401CrossRefPubMed Seyal M, Masuoka LK, Browne JK (1992) Suppression of cutaneous perception by magnetic pulse stimulation of the human brain. Electroencephalogr Clin Neurophysiol 85(6):397–401CrossRefPubMed
33.
go back to reference Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74(6):458–462CrossRefPubMed Amassian VE, Cracco RQ, Maccabee PJ, Cracco JB, Rudell A, Eberle L (1989) Suppression of visual perception by magnetic coil stimulation of human occipital cortex. Electroencephalogr Clin Neurophysiol 74(6):458–462CrossRefPubMed
34.
go back to reference Corthout E, Hallett M, Cowey A (2003) Interference with vision by TMS over the occipital pole: a fourth period. NeuroReport 14(4):651–565CrossRefPubMed Corthout E, Hallett M, Cowey A (2003) Interference with vision by TMS over the occipital pole: a fourth period. NeuroReport 14(4):651–565CrossRefPubMed
35.
go back to reference Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702PubMed Pascual-Leone A, Gates JR, Dhuna A (1991) Induction of speech arrest and counting errors with rapid-rate transcranial magnetic stimulation. Neurology 41(5):697–702PubMed
36.
go back to reference Borckardt JJ, Smith AR, Reeves ST, Weinstein M, Kozel FA, Nahas Z, Shelley N, Branham RK, Thomas KJ, George MS (2007) Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults. Pain Res Manag 12(4):287–290PubMed Borckardt JJ, Smith AR, Reeves ST, Weinstein M, Kozel FA, Nahas Z, Shelley N, Branham RK, Thomas KJ, George MS (2007) Fifteen minutes of left prefrontal repetitive transcranial magnetic stimulation acutely increases thermal pain thresholds in healthy adults. Pain Res Manag 12(4):287–290PubMed
37.
go back to reference Dell’Osso B, Mundo E, D’Urso N, Pozzoli S, Buoli M, Ciabatti M, Rosanova M, Massimini M, Bellina V, Mariotti M, Carlo Altamura A (2009) Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord 11(1):76–81CrossRefPubMed Dell’Osso B, Mundo E, D’Urso N, Pozzoli S, Buoli M, Ciabatti M, Rosanova M, Massimini M, Bellina V, Mariotti M, Carlo Altamura A (2009) Augmentative repetitive navigated transcranial magnetic stimulation (rTMS) in drug-resistant bipolar depression. Bipolar Disord 11(1):76–81CrossRefPubMed
Metadata
Title
Robot-assisted image-guided transcranial magnetic stimulation for somatotopic mapping of the motor cortex: a clinical pilot study
Authors
Sven Rainer Kantelhardt
Tommaso Fadini
Markus Finke
Kai Kallenberg
Jakob Siemerkus
Volker Bockermann
Lars Matthaeus
Walter Paulus
Achim Schweikard
Veit Rohde
Alf Giese
Publication date
01-02-2010
Publisher
Springer Vienna
Published in
Acta Neurochirurgica / Issue 2/2010
Print ISSN: 0001-6268
Electronic ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-009-0565-1

Other articles of this Issue 2/2010

Acta Neurochirurgica 2/2010 Go to the issue