Skip to main content
Top
Published in: Surgery Today 9/2019

01-09-2019 | Neuroblastoma | Review Article

The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development

Authors: Mayumi Higashi, Kohei Sakai, Shigehisa Fumino, Shigeyoshi Aoi, Taizo Furukawa, Tatsuro Tajiri

Published in: Surgery Today | Issue 9/2019

Login to get access

Abstract

Neuroblastoma is one of the most frequent, yet distinctive and challenging childhood tumors. The uniqueness of this tumor depends on its biological markers, which classify neuroblastomas into favorable and unfavorable, with 5-year survival rates ranging from almost 100–30%. In this review, we focus on some biological factors that play major roles in neuroblastoma: MYCN, Trk, and ALK. The MYCN and Trk family genes have been studied for decades and are known to be crucial for the tumorigenesis and progression of neuroblastoma. ALK gene mutations have been recognized recently to be responsible for familial neuroblastomas. Each factor plays an important role in normal neural development, regulating cell proliferation or differentiation by activating several signaling pathways, and interacting with each other. These factors have been studied not only as prognostic factors, but also as targets of neuroblastoma therapy, and some clinical trials are ongoing. We review the basic aspects of MYCN, Trk, and ALK in both neural development and in neuroblastoma.
Literature
2.
go back to reference Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int. 2013;29:101–19.CrossRefPubMed Domingo-Fernandez R, Watters K, Piskareva O, Stallings RL, Bray I. The role of genetic and epigenetic alterations in neuroblastoma disease pathogenesis. Pediatr Surg Int. 2013;29:101–19.CrossRefPubMed
3.
go back to reference Decock A, Ongenaert M, De Wilde B, Brichard B, Noguera R, Speleman F, et al. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics. 2016;11:761–71.CrossRefPubMedPubMedCentral Decock A, Ongenaert M, De Wilde B, Brichard B, Noguera R, Speleman F, et al. Stage 4S neuroblastoma tumors show a characteristic DNA methylation portrait. Epigenetics. 2016;11:761–71.CrossRefPubMedPubMedCentral
4.
go back to reference Olsson M, Beck S, Kogner P, Martinsson T, Carén H. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics. 2016;11:74–84.CrossRefPubMedPubMedCentral Olsson M, Beck S, Kogner P, Martinsson T, Carén H. Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics. 2016;11:74–84.CrossRefPubMedPubMedCentral
5.
go back to reference Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.CrossRefPubMedPubMedCentral Mossé YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, et al. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 2008;455:930–5.CrossRefPubMedPubMedCentral
6.
go back to reference Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.CrossRefPubMed Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, et al. Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature. 2008;455:967–70.CrossRefPubMed
7.
go back to reference Mossé YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res. 2009;15:5609–14.CrossRefPubMed Mossé YP, Wood A, Maris JM. Inhibition of ALK signaling for cancer therapy. Clin Cancer Res. 2009;15:5609–14.CrossRefPubMed
8.
go back to reference Barone G, Anderson J, Pearson ADJ, Petrie K, Chesler L. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin. Cancer Res. 2013;19:5814–21. Barone G, Anderson J, Pearson ADJ, Petrie K, Chesler L. New strategies in neuroblastoma: Therapeutic targeting of MYCN and ALK. Clin. Cancer Res. 2013;19:5814–21.
9.
go back to reference Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–67.CrossRefPubMed Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, et al. Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell. 1983;35:359–67.CrossRefPubMed
10.
go back to reference Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop J. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 1984;81:4940–4.CrossRef Schwab M, Ellison J, Busch M, Rosenau W, Varmus HE, Bishop J. Enhanced expression of the human gene N-myc consequent to amplification of DNA may contribute to malignant progression of neuroblastoma. Proc Natl Acad Sci USA 1984;81:4940–4.CrossRef
11.
go back to reference Wakamatsu Y, Watanabe Y, Nakamura H, Kondoh H. Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development. 1997;124:1953–62.PubMed Wakamatsu Y, Watanabe Y, Nakamura H, Kondoh H. Regulation of the neural crest cell fate by N-myc: promotion of ventral migration and neuronal differentiation. Development. 1997;124:1953–62.PubMed
12.
go back to reference Brodeur GM, Seeger RC, Schwab M, Varmus H, Bishop J. Amplification of N-myc in untreated human neuroblastoma correlates with advanced disease stage. Prog Clin Biol Res. 1985;175:105–13.PubMed Brodeur GM, Seeger RC, Schwab M, Varmus H, Bishop J. Amplification of N-myc in untreated human neuroblastoma correlates with advanced disease stage. Prog Clin Biol Res. 1985;175:105–13.PubMed
13.
go back to reference Mathew P, Valentine MB, Bowman LC, Rowe ST, Nash MB, Valentine V, et al. Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: a pediatric oncology group study. Neoplasia. 2001;3:105–9.CrossRefPubMedPubMedCentral Mathew P, Valentine MB, Bowman LC, Rowe ST, Nash MB, Valentine V, et al. Detection of MYCN gene amplification in neuroblastoma by fluorescence in situ hybridization: a pediatric oncology group study. Neoplasia. 2001;3:105–9.CrossRefPubMedPubMedCentral
14.
go back to reference Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, Addabbo PD, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20:1198–206.CrossRefPubMedPubMedCentral Storlazzi CT, Lonoce A, Guastadisegni MC, Trombetta D, Addabbo PD, Daniele G, et al. Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure Gene amplification as double minutes or homogeneously staining regions in solid tumors: origin and structure. Genome Res. 2010;20:1198–206.CrossRefPubMedPubMedCentral
15.
go back to reference Reiter JL, Brodeur GM. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics. 1996;32:97–103.CrossRefPubMed Reiter JL, Brodeur GM. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics. 1996;32:97–103.CrossRefPubMed
16.
go back to reference Reiter JL, Brodeur GM. MYCN is the only highly expressed gene from the core amplified domain in human neuroblastomas. Genes Chromosom Cancer. 1998;23:134–40.CrossRefPubMed Reiter JL, Brodeur GM. MYCN is the only highly expressed gene from the core amplified domain in human neuroblastomas. Genes Chromosom Cancer. 1998;23:134–40.CrossRefPubMed
17.
go back to reference Nishi Y, Noguchi T, Akiyama K, Yokoyama M, Kanda NMT. Amplification of a DEAD box gene (DDX1) with the MYCN gene in neuroblastoma as a result of cosegregation of sequences flanking the MYCN locus. Genes Chromosom. Cancer. 1996;15:129–33. Nishi Y, Noguchi T, Akiyama K, Yokoyama M, Kanda NMT. Amplification of a DEAD box gene (DDX1) with the MYCN gene in neuroblastoma as a result of cosegregation of sequences flanking the MYCN locus. Genes Chromosom. Cancer. 1996;15:129–33.
18.
go back to reference Kaneko S, Ohira M, Nakamura Y, Isogai E, Nakagawara A, Kaneko M. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma. J Cancer Res Clin Oncol. 2007;133:185–92.CrossRefPubMed Kaneko S, Ohira M, Nakamura Y, Isogai E, Nakagawara A, Kaneko M. Relationship of DDX1 and NAG gene amplification/overexpression to the prognosis of patients with MYCN-amplified neuroblastoma. J Cancer Res Clin Oncol. 2007;133:185–92.CrossRefPubMed
19.
go back to reference Bagci O, Tumer S, Olgun N, Altungoz O. Copy number status and mutation analyses of anaplastic lymphoma kinase (ALK) gene in 90 sporadic neuroblastoma tumors. Cancer Lett. 2012;317:72–7.CrossRefPubMed Bagci O, Tumer S, Olgun N, Altungoz O. Copy number status and mutation analyses of anaplastic lymphoma kinase (ALK) gene in 90 sporadic neuroblastoma tumors. Cancer Lett. 2012;317:72–7.CrossRefPubMed
20.
go back to reference Fransson S, Hansson M, Ruuth K, Djos A, Berbegall A, Javanmardi N, et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosom Cancer. 2015;54:99–109.CrossRefPubMed Fransson S, Hansson M, Ruuth K, Djos A, Berbegall A, Javanmardi N, et al. Intragenic anaplastic lymphoma kinase (ALK) rearrangements: translocations as a novel mechanism of ALK activation in neuroblastoma tumors. Genes Chromosom Cancer. 2015;54:99–109.CrossRefPubMed
21.
go back to reference Wada RK, Seeger RC, Brodeur GM, Einhorn PA, Rayner SA, Tomayko MM, et al. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer. 1993;72:3346–54.CrossRefPubMed Wada RK, Seeger RC, Brodeur GM, Einhorn PA, Rayner SA, Tomayko MM, et al. Human neuroblastoma cell lines that express N-myc without gene amplification. Cancer. 1993;72:3346–54.CrossRefPubMed
22.
go back to reference Nakada K, Fujioka T, Kitagawa H, Takakuwa T. Expressions of N-myc and ras oncogene products in neuroblastoma and their correlations with prognosis. Jpn J Clin Oncol. 1993;23:149–55.PubMed Nakada K, Fujioka T, Kitagawa H, Takakuwa T. Expressions of N-myc and ras oncogene products in neuroblastoma and their correlations with prognosis. Jpn J Clin Oncol. 1993;23:149–55.PubMed
23.
go back to reference Tanaka T, Higashi M, Kimura K, Wakao J, Fumino S, Iehara T. MEK inhibitors as a novel therapy for neuroblastoma: their in vitro effects and predicting their efficacy. J Pediatr Surg. 2016;51:2074–9.CrossRefPubMed Tanaka T, Higashi M, Kimura K, Wakao J, Fumino S, Iehara T. MEK inhibitors as a novel therapy for neuroblastoma: their in vitro effects and predicting their efficacy. J Pediatr Surg. 2016;51:2074–9.CrossRefPubMed
24.
go back to reference Wenzel A, Cziepluch C, Hamann U, Schürmann J, Schwab M. The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J. 1991;10:3703–12.CrossRefPubMedPubMedCentral Wenzel A, Cziepluch C, Hamann U, Schürmann J, Schwab M. The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. EMBO J. 1991;10:3703–12.CrossRefPubMedPubMedCentral
25.
go back to reference Wanzel M, Herold S, Eilers M. Transcriptional repression by Myc. Trends Cell Biol. 2003;13:146–50.CrossRefPubMed Wanzel M, Herold S, Eilers M. Transcriptional repression by Myc. Trends Cell Biol. 2003;13:146–50.CrossRefPubMed
26.
go back to reference Brenner C, Deplus R, Line Didelot C, Loriot A, Viré E, De Smet C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005;24:336–46.CrossRefPubMed Brenner C, Deplus R, Line Didelot C, Loriot A, Viré E, De Smet C, et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 2005;24:336–46.CrossRefPubMed
27.
go back to reference Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2015;511:483–7.CrossRef Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2015;511:483–7.CrossRef
28.
go back to reference Corvetta D, Chayka O, Gherardi S, D’Acunto CW, Cantilena S, Valli E, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications. J Biol Chem. 2013;288:8332–41.CrossRefPubMedPubMedCentral Corvetta D, Chayka O, Gherardi S, D’Acunto CW, Cantilena S, Valli E, et al. Physical interaction between MYCN oncogene and polycomb repressive complex 2 (PRC2) in neuroblastoma: Functional and therapeutic implications. J Biol Chem. 2013;288:8332–41.CrossRefPubMedPubMedCentral
30.
go back to reference Kubota Y, Kim S, Iguchi-Ariga S. H A. Transrepression of the N-myc expression by c-myc protein. Biochem Biophys Res Commun. 1989;162:991–7.CrossRefPubMed Kubota Y, Kim S, Iguchi-Ariga S. H A. Transrepression of the N-myc expression by c-myc protein. Biochem Biophys Res Commun. 1989;162:991–7.CrossRefPubMed
31.
go back to reference Cotterman R, Knoepfler PS. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS One. 2009;4. Cotterman R, Knoepfler PS. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and lin28b. PLoS One. 2009;4.
32.
go back to reference Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, Moreno De Alborán I, Olson JM, et al. N-myc is an essential downstream effector of shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 2006;66:8655–61.CrossRefPubMed Hatton BA, Knoepfler PS, Kenney AM, Rowitch DH, Moreno De Alborán I, Olson JM, et al. N-myc is an essential downstream effector of shh signaling during both normal and neoplastic cerebellar growth. Cancer Res. 2006;66:8655–61.CrossRefPubMed
33.
go back to reference Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol. 2016;10:538–52.CrossRefPubMed Smith JR, Moreno L, Heaton SP, Chesler L, Pearson ADJ, Garrett MD. Novel pharmacodynamic biomarkers for MYCN protein and PI3K/AKT/mTOR pathway signaling in children with neuroblastoma. Mol Oncol. 2016;10:538–52.CrossRefPubMed
34.
go back to reference Segerström L, Baryawno N, Sveinbjörnsson B, Wickström M, Elfman L, Kogner P, et al. Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth in vitro and in vivo. Int J Cancer. 2011;129:2958–65.CrossRefPubMed Segerström L, Baryawno N, Sveinbjörnsson B, Wickström M, Elfman L, Kogner P, et al. Effects of small molecule inhibitors of PI3K/Akt/mTOR signaling on neuroblastoma growth in vitro and in vivo. Int J Cancer. 2011;129:2958–65.CrossRefPubMed
35.
go back to reference Kapeli K, Hurlin PJ. Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the ras/mitogen-activated protein kinase pathway. J Biol Chem. 2011;286:38498–508.CrossRefPubMedPubMedCentral Kapeli K, Hurlin PJ. Differential regulation of N-Myc and c-Myc synthesis, degradation, and transcriptional activity by the ras/mitogen-activated protein kinase pathway. J Biol Chem. 2011;286:38498–508.CrossRefPubMedPubMedCentral
36.
go back to reference Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.CrossRefPubMedPubMedCentral Weiss WA, Aldape K, Mohapatra G, Feuerstein BG, Bishop JM. Targeted expression of MYCN causes neuroblastoma in transgenic mice. EMBO J. 1997;16:2985–95.CrossRefPubMedPubMedCentral
37.
go back to reference Hansford LM, Thomas WD, Keating JM, Burkhart C, Peaston AE, Norris MD, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA. 2004;101:12664–9.CrossRef Hansford LM, Thomas WD, Keating JM, Burkhart C, Peaston AE, Norris MD, et al. Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci USA. 2004;101:12664–9.CrossRef
38.
go back to reference Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3:309–23.CrossRef Puissant A, Frumm SM, Alexe G, Bassil CF, Qi J, Chanthery YH, et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 2013;3:309–23.CrossRef
39.
go back to reference Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin Cancer Res. 2016;22:2470–81.CrossRefPubMed Henssen A, Althoff K, Odersky A, Beckers A, Koche R, Speleman F, et al. Targeting MYCN-driven transcription by BET-bromodomain inhibition. Clin Cancer Res. 2016;22:2470–81.CrossRefPubMed
40.
go back to reference Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA. 1993;90:7859–63. Benedetti M, Levi A, Chao MV. Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci USA. 1993;90:7859–63.
41.
42.
go back to reference Anderson D. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J Neurobiol. 1993;24:185–98.CrossRefPubMed Anderson D. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J Neurobiol. 1993;24:185–98.CrossRefPubMed
43.
go back to reference Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11:272–80.CrossRefPubMed Patapoutian A, Reichardt LF. Trk receptors: Mediators of neurotrophin action. Curr Opin Neurobiol. 2001;11:272–80.CrossRefPubMed
44.
go back to reference Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89:312–23.CrossRefPubMed Lu Y, Christian K, Lu B. BDNF: A key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89:312–23.CrossRefPubMed
45.
go back to reference Li Z, Zhang Y, Tong Y, Tong J, Thiele CJ. Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biol Ther. 2015;16:477–83.CrossRefPubMedPubMedCentral Li Z, Zhang Y, Tong Y, Tong J, Thiele CJ. Trk inhibitor attenuates the BDNF/TrkB-induced protection of neuroblastoma cells from etoposide in vitro and in vivo. Cancer Biol Ther. 2015;16:477–83.CrossRefPubMedPubMedCentral
46.
go back to reference Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005;105:4429–36.CrossRefPubMed Pearse RN, Swendeman SL, Li Y, Rafii D, Hempstead BL. A neurotrophin axis in myeloma: TrkB and BDNF promote tumor-cell survival. Blood. 2005;105:4429–36.CrossRefPubMed
47.
go back to reference Haapasalo A, Saarelainen T, Moshnyakov M, Aruma U, Kiema T, Saarma M, et al. Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene. 1999;18:1285–96.CrossRefPubMed Haapasalo A, Saarelainen T, Moshnyakov M, Aruma U, Kiema T, Saarma M, et al. Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. Oncogene. 1999;18:1285–96.CrossRefPubMed
48.
go back to reference Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun. 2002;290:1054–65.CrossRefPubMed Stoilov P, Castren E, Stamm S. Analysis of the human TrkB gene genomic organization reveals novel TrkB isoforms, unusual gene length, and splicing mechanism. Biochem Biophys Res Commun. 2002;290:1054–65.CrossRefPubMed
49.
go back to reference Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, Vetuschi A, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.CrossRefPubMed Tacconelli A, Farina AR, Cappabianca L, DeSantis G, Tessitore A, Vetuschi A, et al. TrkA alternative splicing: a regulated tumor-promoting switch in human neuroblastoma. Cancer Cell. 2004;6:347–60.CrossRefPubMed
50.
go back to reference Hoehner JC, Olsen L, Sandstedt B, Kaplan DR, Påhlman S. Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am J Pathol. 1995;147:102–13.PubMedPubMedCentral Hoehner JC, Olsen L, Sandstedt B, Kaplan DR, Påhlman S. Association of neurotrophin receptor expression and differentiation in human neuroblastoma. Am J Pathol. 1995;147:102–13.PubMedPubMedCentral
51.
go back to reference Yamashiro D, Nakagawara A, Ikegaki N, Liu X, Brodeur G. Expression of TrkC in favorable human neuroblastoma. Oncogene. 1996;12:37–41.PubMed Yamashiro D, Nakagawara A, Ikegaki N, Liu X, Brodeur G. Expression of TrkC in favorable human neuroblastoma. Oncogene. 1996;12:37–41.PubMed
52.
53.
go back to reference Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467:59–63.CrossRefPubMed Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P, Zhang L, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467:59–63.CrossRefPubMed
54.
go back to reference Nakagawara A. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328:847–53.CrossRefPubMed Nakagawara A. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med. 1993;328:847–53.CrossRefPubMed
56.
go back to reference Norris RE, Minturn JE, Brodeur GM, Maris JM, Adamson PC. Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother Pharmacol. 2011;68:1469–75.CrossRefPubMedPubMedCentral Norris RE, Minturn JE, Brodeur GM, Maris JM, Adamson PC. Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother Pharmacol. 2011;68:1469–75.CrossRefPubMedPubMedCentral
57.
go back to reference Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol. 2011;68:1057–65.CrossRefPubMedPubMedCentral Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S, et al. Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol. 2011;68:1057–65.CrossRefPubMedPubMedCentral
58.
go back to reference Leitão A, Schramm A, Eggert A. Discovery of a new bioactive molecule for neuroblastoma. Chem Biol Drug Des. 2013;82:233–41.CrossRefPubMed Leitão A, Schramm A, Eggert A. Discovery of a new bioactive molecule for neuroblastoma. Chem Biol Drug Des. 2013;82:233–41.CrossRefPubMed
59.
go back to reference Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22:117–30.CrossRefPubMedPubMedCentral Berry T, Luther W, Bhatnagar N, Jamin Y, Poon E, Sanda T, et al. The ALKF1174L mutation potentiates the oncogenic activity of MYCN in neuroblastoma. Cancer Cell. 2012;22:117–30.CrossRefPubMedPubMedCentral
60.
go back to reference Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, et al. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget. 2014;5:4452–66.CrossRefPubMedPubMedCentral Montavon G, Jauquier N, Coulon A, Peuchmaur M, Flahaut M, Bourloud KB, et al. Wild-type ALK and activating ALK-R1275Q and ALK-F1174L mutations upregulate Myc and initiate tumor formation in murine neural crest progenitor cells. Oncotarget. 2014;5:4452–66.CrossRefPubMedPubMedCentral
61.
go back to reference Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61:2939–53.CrossRefPubMed Pulford K, Lamant L, Espinos E, Jiang Q, Xue L, Turturro F, et al. The emerging normal and disease-related roles of anaplastic lymphoma kinase. Cell Mol Life Sci. 2004;61:2939–53.CrossRefPubMed
62.
go back to reference Allouche M. ALK is a novel dependence receptor: potential implications in development and cancer. Cell Cycle. 2007;6:1533–8.CrossRefPubMed Allouche M. ALK is a novel dependence receptor: potential implications in development and cancer. Cell Cycle. 2007;6:1533–8.CrossRefPubMed
63.
go back to reference Umapathy G, Wakil A, El Witek B, Chesler L, Danielson L, Deng X, et al. The kinase ALK stimulates the kinase ELK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal. 2014;7:1–11.CrossRef Umapathy G, Wakil A, El Witek B, Chesler L, Danielson L, Deng X, et al. The kinase ALK stimulates the kinase ELK5 to promote the expression of the oncogene MYCN in neuroblastoma. Sci Signal. 2014;7:1–11.CrossRef
64.
go back to reference Lambertz I, Kumps C, Claeys S, Lindner S, Beckers A, Janssens E, et al. Upregulation of MAPK negative feedback regulators and RET in mutant ALK neuroblastoma: implications for targeted treatment. Clin Cancer Res. 2015;21:3327–39.CrossRefPubMed Lambertz I, Kumps C, Claeys S, Lindner S, Beckers A, Janssens E, et al. Upregulation of MAPK negative feedback regulators and RET in mutant ALK neuroblastoma: implications for targeted treatment. Clin Cancer Res. 2015;21:3327–39.CrossRefPubMed
65.
go back to reference Cazes A, Lopez-Delisle L, Tsarovina K, Pierre-Eugène C, De Preter K, Peuchmaur M, et al. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget. 2014;5:2688–702.CrossRefPubMedPubMedCentral Cazes A, Lopez-Delisle L, Tsarovina K, Pierre-Eugène C, De Preter K, Peuchmaur M, et al. Activated Alk triggers prolonged neurogenesis and Ret upregulation providing a therapeutic target in ALK-mutated neuroblastoma. Oncotarget. 2014;5:2688–702.CrossRefPubMedPubMedCentral
66.
go back to reference Mossé YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.CrossRefPubMedPubMedCentral Mossé YP, Lim MS, Voss SD, Wilner K, Ruffner K, Laliberte J, et al. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: a Children’s Oncology Group phase 1 consortium study. Lancet Oncol. 2013;14:472–80.CrossRefPubMedPubMedCentral
67.
go back to reference Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, et al. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech. 2016;9:941–52.CrossRefPubMedPubMedCentral Guan J, Tucker ER, Wan H, Chand D, Danielson LS, Ruuth K, et al. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN. Dis Model Mech. 2016;9:941–52.CrossRefPubMedPubMedCentral
Metadata
Title
The roles played by the MYCN, Trk, and ALK genes in neuroblastoma and neural development
Authors
Mayumi Higashi
Kohei Sakai
Shigehisa Fumino
Shigeyoshi Aoi
Taizo Furukawa
Tatsuro Tajiri
Publication date
01-09-2019
Publisher
Springer Singapore
Published in
Surgery Today / Issue 9/2019
Print ISSN: 0941-1291
Electronic ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-019-01790-0

Other articles of this Issue 9/2019

Surgery Today 9/2019 Go to the issue