Skip to main content
Top
Published in: Surgery Today 12/2018

01-12-2018 | Original Article

SPRED2 deficiency may lead to lung ischemia–reperfusion injury via ERK1/2 signaling pathway activation

Authors: Masanori Okada, Masaomi Yamane, Sumiharu Yamamoto, Shinji Otani, Kentaroh Miyoshi, Seiichiro Sugimoto, Akihiro Matsukawa, Shinichi Toyooka, Takahiro Oto, Shinichiro Miyoshi

Published in: Surgery Today | Issue 12/2018

Login to get access

Abstract

Purpose

Inflammatory changes during lung ischemia–reperfusion injury (IRI) are related to the activation of the extracellular signal-regulated kinase (ERK)1/2 signaling pathway. Sprouty-related EVH1 (enabled/vasodilator-stimulated phosphoprotein homology 1)-domain-containing proteins (SPREDs) are known inhibitors of ERK1/2 signaling. The role of SPRED2 in lung IRI was examined in a left hilar clamp mouse model.

Methods

C57BL/6 wild-type (WT) and Spred2−/− mice were used in the left hilar clamp model. Experimental groups underwent 30 min of left hilar clamping followed by 1 h of reperfusion. U0126, an ERK1/2 inhibitor, was administered to Spred2−/− mice with reperfused lungs.

Results

The partial pressures of oxygen of the Spred2−/− mice after reperfusion were significantly worse than those of WT mice (p < 0.01). Spred2−/− mice displayed more severe injuries than WT mice with increased neutrophil infiltration observed by a histological evaluation and flow cytometry (p < 0.001). This severe inflammation was inhibited by U0126. In addition, the rate of ERK1 activation was significantly higher in the lungs of Spred2−/− mice after reperfusion than in WT mice according to a Western blot analysis (p < 0.05).

Conclusion

The activation of the ERK1/2 signaling pathway influences the severity of lung IRI, causing inflammation with neutrophil infiltration. SPRED2 may be a promising target for the suppression of lung IRI.
Literature
1.
go back to reference de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia–reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.CrossRef de Perrot M, Liu M, Waddell TK, Keshavjee S. Ischemia–reperfusion-induced lung injury. Am J Respir Crit Care Med. 2003;167(4):490–511.CrossRef
2.
go back to reference den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia–reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299(5):H1283-99. den Hengst WA, Gielis JF, Lin JY, Van Schil PE, De Windt LJ, Moens AL. Lung ischemia–reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol. 2010;299(5):H1283-99.
3.
go back to reference Carden DL, Granger DN. Pathophysiology of ischaemia–reperfusion injury. J Pathol. 2000;190:255–66.CrossRef Carden DL, Granger DN. Pathophysiology of ischaemia–reperfusion injury. J Pathol. 2000;190:255–66.CrossRef
4.
go back to reference Ross SD, Tribble CG, Gaughen JRJ, Shockey KS, Parrino PE, Kron IL. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg. 1999;67:1428–34.CrossRef Ross SD, Tribble CG, Gaughen JRJ, Shockey KS, Parrino PE, Kron IL. Reduced neutrophil infiltration protects against lung reperfusion injury after transplantation. Ann Thorac Surg. 1999;67:1428–34.CrossRef
5.
go back to reference Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res. 2000;47:537–48.CrossRef Cuzzocrea S, Mazzon E, Costantino G, Serraino I, De Sarro A, Caputi AP. Effects of n-acetylcysteine in a rat model of ischemia and reperfusion injury. Cardiovasc Res. 2000;47:537–48.CrossRef
6.
go back to reference Millar TM, Phan V, Tibbles LA. ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med. 2007;42(8):1165–77.CrossRef Millar TM, Phan V, Tibbles LA. ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med. 2007;42(8):1165–77.CrossRef
7.
go back to reference Sayah DM, Mallavia B, Liu F, Ortiz-Muñoz G, Caudrillier A, DerHovanessian A, et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2015;191(4):455–63.CrossRef Sayah DM, Mallavia B, Liu F, Ortiz-Muñoz G, Caudrillier A, DerHovanessian A, et al. Neutrophil extracellular traps are pathogenic in primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med. 2015;191(4):455–63.CrossRef
8.
go back to reference Yamamoto S, Yamane M, Yoshida O, Waki N, Okazaki M, Matsukawa A, et al. Early growth response-1 plays an important role in ischemia–reperfusion injury in lung transplants by regulating polymorphonuclear neutrophil infiltration. Transplantation. 2015;99:2285–93.CrossRef Yamamoto S, Yamane M, Yoshida O, Waki N, Okazaki M, Matsukawa A, et al. Early growth response-1 plays an important role in ischemia–reperfusion injury in lung transplants by regulating polymorphonuclear neutrophil infiltration. Transplantation. 2015;99:2285–93.CrossRef
9.
go back to reference Takano M, Meneshian A, Sheikh E, Yamakawa Y, Wilkins KB, Hopkins EA, et al. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. Am J Physiol Heart Circ Physiol. 2002;283(5):H2054-61.CrossRef Takano M, Meneshian A, Sheikh E, Yamakawa Y, Wilkins KB, Hopkins EA, et al. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. Am J Physiol Heart Circ Physiol. 2002;283(5):H2054-61.CrossRef
10.
11.
go back to reference Strniskova M, Barancik M, Ravingerova T. Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys. 2002;21(3):231–55.PubMed Strniskova M, Barancik M, Ravingerova T. Mitogen-activated protein kinases and their role in regulation of cellular processes. Gen Physiol Biophys. 2002;21(3):231–55.PubMed
12.
go back to reference Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 2008;22(4):954–65.CrossRef Junttila MR, Li SP, Westermarck J. Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J. 2008;22(4):954–65.CrossRef
13.
go back to reference Ishii M, Suzuki Y, Takeshita K, Miyao N, Kudo H, Hiraoka R, et al. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol. 2004;172(4):2569–77.CrossRef Ishii M, Suzuki Y, Takeshita K, Miyao N, Kudo H, Hiraoka R, et al. Inhibition of c-Jun NH2-terminal kinase activity improves ischemia/reperfusion injury in rat lungs. J Immunol. 2004;172(4):2569–77.CrossRef
14.
go back to reference Kawashima Y, Takeyoshi I, Otani Y, Koibuchi Y, Yoshinari D, Koyama T, et al. FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogen-activated protein kinase. J Heart Lung Transplant. 2001;20:568–74.CrossRef Kawashima Y, Takeyoshi I, Otani Y, Koibuchi Y, Yoshinari D, Koyama T, et al. FR167653 attenuates ischemia and reperfusion injury of the rat lung with suppressing p38 mitogen-activated protein kinase. J Heart Lung Transplant. 2001;20:568–74.CrossRef
15.
go back to reference Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, et al. Carbon monoxide inhibition of apoptosis during ischemia–reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem. 2003;278(2):1248–58.CrossRef Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, et al. Carbon monoxide inhibition of apoptosis during ischemia–reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem. 2003;278(2):1248–58.CrossRef
16.
go back to reference Itakura J, Sato M, Ito T, Mino M, Fushimi S, Takahashi S, et al. Spred2-deficiecy protects mice from polymicrobial septic peritonitis by enhancing inflammation and bacterial clearance. Sci Rep. 2017;7(1):12833.CrossRef Itakura J, Sato M, Ito T, Mino M, Fushimi S, Takahashi S, et al. Spred2-deficiecy protects mice from polymicrobial septic peritonitis by enhancing inflammation and bacterial clearance. Sci Rep. 2017;7(1):12833.CrossRef
17.
go back to reference Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621–31.CrossRef Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621–31.CrossRef
18.
go back to reference Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRef Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–49.CrossRef
19.
go back to reference Kwon DS, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK. Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol. 2006;85(11):1189–99.CrossRef Kwon DS, Kwon CH, Kim JH, Woo JS, Jung JS, Kim YK. Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells. Eur J Cell Biol. 2006;85(11):1189–99.CrossRef
20.
go back to reference Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem. 2001;276(15):11870–76.CrossRef Park KM, Chen A, Bonventre JV. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J Biol Chem. 2001;276(15):11870–76.CrossRef
21.
go back to reference Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S, et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G236-44.CrossRef Kaizu T, Ikeda A, Nakao A, Tsung A, Toyokawa H, Ueki S, et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol. 2008;294(1):G236-44.CrossRef
22.
go back to reference Naito Z, Kubo M, Xu G, Nishigaki R, Yokoyama M, Yamada N, et al. Immunohistochemical localization of mitogen-activated protein kinase (MAPK) family and morphological changes in rat heart after ischemia–reperfusion injury. Med Electron Microsc. 2000;33:74–81.CrossRef Naito Z, Kubo M, Xu G, Nishigaki R, Yokoyama M, Yamada N, et al. Immunohistochemical localization of mitogen-activated protein kinase (MAPK) family and morphological changes in rat heart after ischemia–reperfusion injury. Med Electron Microsc. 2000;33:74–81.CrossRef
23.
go back to reference Sakiyama S, Hamilton J, Han B, Jiao Y, Shen-Tu G, de Perrot M, et al. Activation of mitogen-activated protein kinases during human lung transplantation. J Heart Lung Transplant. 2005;24(12):2079–85.CrossRef Sakiyama S, Hamilton J, Han B, Jiao Y, Shen-Tu G, de Perrot M, et al. Activation of mitogen-activated protein kinases during human lung transplantation. J Heart Lung Transplant. 2005;24(12):2079–85.CrossRef
24.
go back to reference Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, et al. Spred is a sprouty-related suppressor of Ras signalling. Nature. 2001;412(6847):647–51.CrossRef Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, Miyoshi K, et al. Spred is a sprouty-related suppressor of Ras signalling. Nature. 2001;412(6847):647–51.CrossRef
25.
go back to reference Yoshimura A. Regulation of cytokine signaling by the SOCS and Spred family proteins. Keio J Med. 2009;58(2):73–83.CrossRef Yoshimura A. Regulation of cytokine signaling by the SOCS and Spred family proteins. Keio J Med. 2009;58(2):73–83.CrossRef
26.
go back to reference Nobuhisa I, Kato R, Inoue H, Takizawa M, Okita K, Yoshimura A, et al. Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. J Exp Med. 2004;199(5):737–42.CrossRef Nobuhisa I, Kato R, Inoue H, Takizawa M, Okita K, Yoshimura A, et al. Spred-2 suppresses aorta-gonad-mesonephros hematopoiesis by inhibiting MAP kinase activation. J Exp Med. 2004;199(5):737–42.CrossRef
27.
go back to reference Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, et al. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol. 2007;27(12):4541–50.CrossRef Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T, et al. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol. 2007;27(12):4541–50.CrossRef
28.
go back to reference Xu Y, Ito T, Fushimi S, Takahashi S, Itakura J, Kimura R, et al. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice. PLoS One. 2014;9(9):e108914.CrossRef Xu Y, Ito T, Fushimi S, Takahashi S, Itakura J, Kimura R, et al. Spred-2 deficiency exacerbates lipopolysaccharide-induced acute lung inflammation in mice. PLoS One. 2014;9(9):e108914.CrossRef
29.
go back to reference Zanotti G, Casiraghi M, Abano JB, Tatreau JR, Sevala M, Berlin H, et al. Novel critical role of Toll-like receptor 4 in lung ischemia–reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L52–63.CrossRef Zanotti G, Casiraghi M, Abano JB, Tatreau JR, Sevala M, Berlin H, et al. Novel critical role of Toll-like receptor 4 in lung ischemia–reperfusion injury and edema. Am J Physiol Lung Cell Mol Physiol. 2009;297(1):L52–63.CrossRef
30.
go back to reference Li SP, Junttila MR, Han J, Kähäri VM, Westermarck J. p38 Mitogen-activated protein kinase pathway suppresses cell survival by inducing dephosphorylation of mitogen-activated protein/extracellular signal-regulated kinase kinase1,2. Cancer Res. 2003;63(13):3473–7.PubMed Li SP, Junttila MR, Han J, Kähäri VM, Westermarck J. p38 Mitogen-activated protein kinase pathway suppresses cell survival by inducing dephosphorylation of mitogen-activated protein/extracellular signal-regulated kinase kinase1,2. Cancer Res. 2003;63(13):3473–7.PubMed
31.
go back to reference Ban K, Peng Z, Kozar RA. Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury. PLoS One. 2013;8(9):e76790.CrossRef Ban K, Peng Z, Kozar RA. Inhibition of ERK1/2 worsens intestinal ischemia/reperfusion injury. PLoS One. 2013;8(9):e76790.CrossRef
32.
go back to reference Liu FC, Chuang YH, Tsai YF, Yu HP. Role of neutrophil extracellular traps following injury. Shock. 2014;41(6):491–8.CrossRef Liu FC, Chuang YH, Tsai YF, Yu HP. Role of neutrophil extracellular traps following injury. Shock. 2014;41(6):491–8.CrossRef
Metadata
Title
SPRED2 deficiency may lead to lung ischemia–reperfusion injury via ERK1/2 signaling pathway activation
Authors
Masanori Okada
Masaomi Yamane
Sumiharu Yamamoto
Shinji Otani
Kentaroh Miyoshi
Seiichiro Sugimoto
Akihiro Matsukawa
Shinichi Toyooka
Takahiro Oto
Shinichiro Miyoshi
Publication date
01-12-2018
Publisher
Springer Singapore
Published in
Surgery Today / Issue 12/2018
Print ISSN: 0941-1291
Electronic ISSN: 1436-2813
DOI
https://doi.org/10.1007/s00595-018-1696-x

Other articles of this Issue 12/2018

Surgery Today 12/2018 Go to the issue