Skip to main content
Top
Published in: Acta Diabetologica 3/2011

01-09-2011 | Original Article

The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel

Authors: Dimitry A. Chistiakov, V. A. Potapov, S. A. Smetanina, L. N. Bel’chikova, L. A. Suplotova, V. V. Nosikov

Published in: Acta Diabetologica | Issue 3/2011

Login to get access

Abstract

On chromosome 6q22.3, a cluster of single-nucleotide polymorphisms located in intron 5 of the cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1-like 1 (CDKAL1) gene were shown to confer susceptibility to type 2 diabetes in multiple ethnic groups. The diabetogenic role of CDKAL1 variants is suggested to consist in lower insulin secretion probably due to the insufficient inhibition of the CDK5 activity. In this study, we assessed the association of several SNPs of CDKAL1 with T2D in 772 Russian affected patients and 773 normoglycemic controls using a Taqman-based allelic discrimination assay. We showed association of the minor allele C of rs10946398 (Odds Ratio (OR) = 1.21, 95% CI = 1.04–1.4, P = 0.016), allele C of rs7754840 (OR = 1.18, 95% CI = 1.01–1.37, P = 0.038), and allele G of rs7756992 (OR = 1.21, 95% CI = 1.04–1.42, P = 0.017) with higher diabetes risk thereby replicating the predisposing role of CDKAL1 in etiology of T2D. These alleles contribute to three haplotypes (CCA, CGG, and CCG) related to higher diabetes risk (OR = 1.48, 2.12, and 1.95). Combinations of these haplotypes between each other form the group of high-risk haplogenotypes whose carriers had decreased HOMA-β compared to other CDKAL1 variants in both diabetic (38.6 ± 19.3 vs. 48.2 ± 21.2, P adjusted = 0.019–0.044) and non-diabetic (91.8 ± 42.1 vs. 108 ± 47.2, P adjusted = 0.0054–0.01) patients. The carriage of the risk haplogenotypes of CDKAL1 was associated with reduced response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel. These data suggest that CDKAL1 is involved in the pathogenesis of T2D through impaired beta-cell function.
Literature
1.
go back to reference Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110PubMedCrossRef Florez JC (2008) Newly identified loci highlight beta cell dysfunction as a key cause of type 2 diabetes: where are the insulin resistance genes? Diabetologia 51:1100–1110PubMedCrossRef
2.
go back to reference Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS, Wellcome Trust Case Control Consortium (WTCCC), McCarthy MI, Hattersley AT (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 16:1336–1341CrossRef Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS, Wellcome Trust Case Control Consortium (WTCCC), McCarthy MI, Hattersley AT (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 16:1336–1341CrossRef
3.
go back to reference Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371:423–426PubMedCrossRef Lew J, Huang QQ, Qi Z, Winkfein RJ, Aebersold R, Hunt T, Wang JH (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371:423–426PubMedCrossRef
4.
go back to reference Paglini G, Cáceres A (2001) The role of the Cdk5-p35 kinase in neuronal development. Eur J Biochem 268:1528–1533PubMedCrossRef Paglini G, Cáceres A (2001) The role of the Cdk5-p35 kinase in neuronal development. Eur J Biochem 268:1528–1533PubMedCrossRef
5.
go back to reference Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28:1023–1034PubMedCrossRef Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28:1023–1034PubMedCrossRef
6.
go back to reference Ubeda M, Kemp DM, Habener JF (2004) Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology 145:3023–3031PubMedCrossRef Ubeda M, Kemp DM, Habener JF (2004) Glucose-induced expression of the cyclin-dependent protein kinase 5 activator p35 involved in Alzheimer’s disease regulates insulin gene transcription in pancreatic beta-cells. Endocrinology 145:3023–3031PubMedCrossRef
7.
go back to reference Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, Yamada Y, Mikoshiba K, Seino Y, Matsui H, Tomizawa K (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11:1104–1108PubMedCrossRef Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, Yamada Y, Mikoshiba K, Seino Y, Matsui H, Tomizawa K (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11:1104–1108PubMedCrossRef
8.
go back to reference Ubeda M, Rukstalis JM, Habener JF (2006) Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem 281:28858–28864PubMedCrossRef Ubeda M, Rukstalis JM, Habener JF (2006) Inhibition of cyclin-dependent kinase 5 activity protects pancreatic beta cells from glucotoxicity. J Biol Chem 281:28858–28864PubMedCrossRef
9.
go back to reference Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, Staiger H, Stefan N, Häring HU, Fritsche A (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, Staiger H, Stefan N, Häring HU, Fritsche A (2008) Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. Diabetologia 51:597–601PubMedCrossRef
10.
go back to reference Haupt A, Staiger H, Schäfer SA, Kirchhoff K, Guthoff M, Machicao F, Gallwitz B, Stefan N, Häring HU, Fritsche A (2009) The risk allele load accelerates the age-dependent decline in beta cell function. Diabetologia 52:457–462PubMedCrossRef Haupt A, Staiger H, Schäfer SA, Kirchhoff K, Guthoff M, Machicao F, Gallwitz B, Stefan N, Häring HU, Fritsche A (2009) The risk allele load accelerates the age-dependent decline in beta cell function. Diabetologia 52:457–462PubMedCrossRef
11.
go back to reference Stancáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS, Boehnke M, Kuusisto J, Laakso M (2009) Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58:2129–2136PubMedCrossRef Stancáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS, Boehnke M, Kuusisto J, Laakso M (2009) Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes 58:2129–2136PubMedCrossRef
12.
go back to reference Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI, Frayling TM, Walker M, RISC Consortium; U.K. Type 2 Diabetes Genetics Consortium (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 56:3101–3104PubMedCrossRef Pascoe L, Tura A, Patel SK, Ibrahim IM, Ferrannini E, Zeggini E, Weedon MN, Mari A, Hattersley AT, McCarthy MI, Frayling TM, Walker M, RISC Consortium; U.K. Type 2 Diabetes Genetics Consortium (2007) Common variants of the novel type 2 diabetes genes CDKAL1 and HHEX/IDE are associated with decreased pancreatic beta-cell function. Diabetes 56:3101–3104PubMedCrossRef
13.
go back to reference Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Boström K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Råstam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjögren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336 Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI, Chen H, Roix JJ, Kathiresan S, Hirschhorn JN, Daly MJ, Hughes TE, Groop L, Altshuler D, Almgren P, Florez JC, Meyer J, Ardlie K, Bengtsson Boström K, Isomaa B, Lettre G, Lindblad U, Lyon HN, Melander O, Newton-Cheh C, Nilsson P, Orho-Melander M, Råstam L, Speliotes EK, Taskinen MR, Tuomi T, Guiducci C, Berglund A, Carlson J, Gianniny L, Hackett R, Hall L, Holmkvist J, Laurila E, Sjögren M, Sterner M, Surti A, Svensson M, Svensson M, Tewhey R, Blumenstiel B, Parkin M, Defelice M, Barry R, Brodeur W, Camarata J, Chia N, Fava M, Gibbons J, Handsaker B, Healy C, Nguyen K, Gates C, Sougnez C, Gage D, Nizzari M, Gabriel SB, Chirn GW, Ma Q, Parikh H, Richardson D, Ricke D, Purcell S (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336
14.
go back to reference Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775PubMedCrossRef Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB, Styrkarsdottir U, Gretarsdottir S, Emilsson V, Ghosh S, Baker A, Snorradottir S, Bjarnason H, Ng MC, Hansen T, Bagger Y, Wilensky RL, Reilly MP, Adeyemo A, Chen Y, Zhou J, Gudnason V, Chen G, Huang H, Lashley K, Doumatey A, So WY, Ma RC, Andersen G, Borch-Johnsen K, Jorgensen T, van Vliet-Ostaptchouk JV, Hofker MH, Wijmenga C, Christiansen C, Rader DJ, Rotimi C, Gurney M, Chan JC, Pedersen O, Sigurdsson G, Gulcher JR, Thorsteinsdottir U, Kong A, Stefansson K (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775PubMedCrossRef
15.
go back to reference Cauchi S, Proença C, Choquet H, Gaget S, De Graeve F, Marre M, Balkau B, Tichet J, Meyre D, Vaxillaire M, Froguel P, D.E.S.I.R. Study Group (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J Mol Med 86:341–348PubMedCrossRef Cauchi S, Proença C, Choquet H, Gaget S, De Graeve F, Marre M, Balkau B, Tichet J, Meyre D, Vaxillaire M, Froguel P, D.E.S.I.R. Study Group (2008) Analysis of novel risk loci for type 2 diabetes in a general French population: the D.E.S.I.R. study. J Mol Med 86:341–348PubMedCrossRef
16.
go back to reference Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA, Machicao F, Schäfer SA, Häring HU, ‘t Hart LM, van Haeften TW (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663PubMedCrossRef Groenewoud MJ, Dekker JM, Fritsche A, Reiling E, Nijpels G, Heine RJ, Maassen JA, Machicao F, Schäfer SA, Häring HU, ‘t Hart LM, van Haeften TW (2008) Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps. Diabetologia 51:1659–1663PubMedCrossRef
17.
go back to reference Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, Norris JM, Haffner SM, Bryer-Ash M, Bergman RN, Wagenknecht LE, Taylor KD, Rotter JI, Bowden DW (2008) Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the Insulin Resistance Atherosclerosis Family Study. Diabetes 57:1093–1100PubMedCrossRef Palmer ND, Goodarzi MO, Langefeld CD, Ziegler J, Norris JM, Haffner SM, Bryer-Ash M, Bergman RN, Wagenknecht LE, Taylor KD, Rotter JI, Bowden DW (2008) Quantitative trait analysis of type 2 diabetes susceptibility loci identified from whole genome association studies in the Insulin Resistance Atherosclerosis Family Study. Diabetes 57:1093–1100PubMedCrossRef
18.
go back to reference Stancáková A, Pihlajamäki J, Kuusisto J, Stefan N, Fritsche A, Häring H, Andreozzi F, Succurro E, Sesti G, Boesgaard TW, Hansen T, Pedersen O, Jansson PA, Hammarstedt A, Smith U, Laakso M, EUGENE2 Consortium (2008) Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J Clin Endocrinol Metab 93:1924–1930PubMedCrossRef Stancáková A, Pihlajamäki J, Kuusisto J, Stefan N, Fritsche A, Häring H, Andreozzi F, Succurro E, Sesti G, Boesgaard TW, Hansen T, Pedersen O, Jansson PA, Hammarstedt A, Smith U, Laakso M, EUGENE2 Consortium (2008) Single-nucleotide polymorphism rs7754840 of CDKAL1 is associated with impaired insulin secretion in nondiabetic offspring of type 2 diabetic subjects and in a large sample of men with normal glucose tolerance. J Clin Endocrinol Metab 93:1924–1930PubMedCrossRef
19.
go back to reference Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, Bouchard C, Pérusse L (2009) Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol 46:217–226PubMedCrossRef Ruchat SM, Elks CE, Loos RJ, Vohl MC, Weisnagel SJ, Rankinen T, Bouchard C, Pérusse L (2009) Association between insulin secretion, insulin sensitivity and type 2 diabetes susceptibility variants identified in genome-wide association studies. Acta Diabetol 46:217–226PubMedCrossRef
20.
go back to reference ‘tHart LM, Simonis-Bik AM, Nijpels G, van Haeften TW, Schäfer SA, Houwing-Duistermaat JJ, Boomsma DI, Groenewoud MJ, Reiling E, van Hove EC, Diamant M, Kramer MH, Heine RJ, Maassen JA, Kirchhoff K, Machicao F, Häring HU, Slagboom PE, Willemsen G, Eekhoff EM, de Geus EJ, Dekker JM, Fritsche A (2010) Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 59:287–292CrossRef ‘tHart LM, Simonis-Bik AM, Nijpels G, van Haeften TW, Schäfer SA, Houwing-Duistermaat JJ, Boomsma DI, Groenewoud MJ, Reiling E, van Hove EC, Diamant M, Kramer MH, Heine RJ, Maassen JA, Kirchhoff K, Machicao F, Häring HU, Slagboom PE, Willemsen G, Eekhoff EM, de Geus EJ, Dekker JM, Fritsche A (2010) Combined risk allele score of eight type 2 diabetes genes is associated with reduced first-phase glucose-stimulated insulin secretion during hyperglycemic clamps. Diabetes 59:287–292CrossRef
21.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU, Prokunina-Olsson L, Ding CJ, Swift AJ, Narisu N, Hu T, Pruim R, Xiao R, Li XY, Conneely KN, Riebow NL, Sprau AG, Tong M, White PP, Hetrick KN, Barnhart MW, Bark CW, Goldstein JL, Watkins L, Xiang F, Saramies J, Buchanan TA, Watanabe RM, Valle TT, Kinnunen L, Abecasis GR, Pugh EW, Doheny KF, Bergman RN, Tuomilehto J, Collins FS, Boehnke M (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef
22.
go back to reference Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K, Froguel P, Kadowaki T (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50:2461–2466PubMedCrossRef Horikoshi M, Hara K, Ito C, Shojima N, Nagai R, Ueki K, Froguel P, Kadowaki T (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50:2461–2466PubMedCrossRef
23.
go back to reference Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K, Kawamori R, Nakamura Y, Maeda S (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795PubMedCrossRef Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, Kaku K, Kawamori R, Nakamura Y, Maeda S (2008) Association of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. Diabetes 57:791–795PubMedCrossRef
24.
go back to reference Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, Ahn CW, Cha BS, Nam M, Nam CM, Lee HC (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998PubMedCrossRef Lee YH, Kang ES, Kim SH, Han SJ, Kim CH, Kim HJ, Ahn CW, Cha BS, Nam M, Nam CM, Lee HC (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998PubMedCrossRef
25.
go back to reference Liu Y, Yu L, Zhang D, Chen Z, Zhou DZ, Zhao T, Li S, Wang T, Hu X, Feng GY, Zhang ZF, He L, Xu H (2008) Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51:2134–2137PubMedCrossRef Liu Y, Yu L, Zhang D, Chen Z, Zhou DZ, Zhao T, Li S, Wang T, Hu X, Feng GY, Zhang ZF, He L, Xu H (2008) Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals. Diabetologia 51:2134–2137PubMedCrossRef
26.
go back to reference Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS, Kim HL, Lee HK, Chan JC, Cho NH (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719 Asians. Diabetes 57:2226–2233PubMedCrossRef Ng MC, Park KS, Oh B, Tam CH, Cho YM, Shin HD, Lam VK, Ma RC, So WY, Cho YS, Kim HL, Lee HK, Chan JC, Cho NH (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6, 719 Asians. Diabetes 57:2226–2233PubMedCrossRef
27.
go back to reference Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Xiang K, Jia W (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643PubMedCrossRef Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, Qin W, Hou X, Wang C, Bao Y, Xiang K, Jia W (2009) PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population. PLoS One 4:e7643PubMedCrossRef
28.
go back to reference Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD, Freedman BI, Divers J, Bowden DW (2008) Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57:2220–2225PubMedCrossRef Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD, Freedman BI, Divers J, Bowden DW (2008) Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57:2220–2225PubMedCrossRef
29.
go back to reference Dehwah MA, Wang M, Huang QY (2010) CDKAL1 and type 2 diabetes: a global meta-analysis. Genet Mol Res 9:1109–1120PubMedCrossRef Dehwah MA, Wang M, Huang QY (2010) CDKAL1 and type 2 diabetes: a global meta-analysis. Genet Mol Res 9:1109–1120PubMedCrossRef
31.
go back to reference Chistiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV (2009) Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 46:43–49PubMedCrossRef Chistiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV (2009) Genetic variations in the pancreatic ATP-sensitive potassium channel, β-cell dysfunction, and susceptibility to type 2 diabetes. Acta Diabetol 46:43–49PubMedCrossRef
32.
go back to reference Chistiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV (2010) Replication of association between polymorphisms of the pancreatic ATP-sensitive potassium channel and susceptibility to type 2 diabetes in two Russian urban populations. Cent Eur J Biol 5:67–77CrossRef Chistiakov DA, Potapov VA, Khodirev DS, Shamkhalova MS, Shestakova MV, Nosikov VV (2010) Replication of association between polymorphisms of the pancreatic ATP-sensitive potassium channel and susceptibility to type 2 diabetes in two Russian urban populations. Cent Eur J Biol 5:67–77CrossRef
33.
go back to reference Alberti KG, Zimmet PZ, WHO Consultation (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15:539–553PubMedCrossRef Alberti KG, Zimmet PZ, WHO Consultation (1998) Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet Med 15:539–553PubMedCrossRef
34.
go back to reference Balkau B, Charles MA (1999) Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 16:442–443PubMedCrossRef Balkau B, Charles MA (1999) Comment on the provisional report from the WHO consultation. European Group for the Study of Insulin Resistance (EGIR). Diabet Med 16:442–443PubMedCrossRef
35.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419PubMedCrossRef
36.
go back to reference Zapata C, Carollo C, Rodriguez S (2001) Sampling variance and distribution of the D′ measure of overall gametic disequilibrium between multial-lelic loci. Ann Hum Genet 65:395–406PubMedCrossRef Zapata C, Carollo C, Rodriguez S (2001) Sampling variance and distribution of the D′ measure of overall gametic disequilibrium between multial-lelic loci. Ann Hum Genet 65:395–406PubMedCrossRef
37.
go back to reference Zhao JH (2004) 2LD, GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. Bioinformatics 20:1325–1326PubMedCrossRef Zhao JH (2004) 2LD, GENECOUNTING and HAP: computer programs for linkage disequilibrium analysis. Bioinformatics 20:1325–1326PubMedCrossRef
38.
go back to reference Cauchi S, Meyre D, Durand E, Proença C, Marre M, Hadjadj S, Choquet H, De Graeve F, Gaget S, Allegaert F, Delplanque J, Permutt MA, Wasson J, Blech I, Charpentier G, Balkau B, Vergnaud AC, Czernichow S, Patsch W, Chikri M, Glaser B, Sladek R, Froguel P (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 3:e2031PubMedCrossRef Cauchi S, Meyre D, Durand E, Proença C, Marre M, Hadjadj S, Choquet H, De Graeve F, Gaget S, Allegaert F, Delplanque J, Permutt MA, Wasson J, Blech I, Charpentier G, Balkau B, Vergnaud AC, Czernichow S, Patsch W, Chikri M, Glaser B, Sladek R, Froguel P (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene-gene interaction and high predictive value. PLoS One 3:e2031PubMedCrossRef
39.
go back to reference Kelliny C, Ekelund U, Andersen LB, Brage S, Loos RJ, Wareham NJ, Langenberg C (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939–2945PubMedCrossRef Kelliny C, Ekelund U, Andersen LB, Brage S, Loos RJ, Wareham NJ, Langenberg C (2009) Common genetic determinants of glucose homeostasis in healthy children: the European Youth Heart Study. Diabetes 58:2939–2945PubMedCrossRef
40.
go back to reference Freathy RM, Bennett AJ, Ring SM, Shields B, Groves CJ, Timpson NJ, Weedon MN, Zeggini E, Lindgren CM, Lango H, Perry JR, Pouta A, Ruokonen A, Hyppönen E, Power C, Elliott P, Strachan DP, Järvelin MR, Smith GD, McCarthy MI, Frayling TM, Hattersley AT (2009) Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes 58:1428–1433PubMedCrossRef Freathy RM, Bennett AJ, Ring SM, Shields B, Groves CJ, Timpson NJ, Weedon MN, Zeggini E, Lindgren CM, Lango H, Perry JR, Pouta A, Ruokonen A, Hyppönen E, Power C, Elliott P, Strachan DP, Järvelin MR, Smith GD, McCarthy MI, Frayling TM, Hattersley AT (2009) Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes 58:1428–1433PubMedCrossRef
41.
go back to reference Andersson EA, Pilgaard K, Pisinger C, Harder MN, Grarup N, Faerch K, Poulsen P, Witte DR, Jørgensen T, Vaag A, Hansen T, Pedersen O (2010) Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight. Diabetologia 53:1908–1916PubMedCrossRef Andersson EA, Pilgaard K, Pisinger C, Harder MN, Grarup N, Faerch K, Poulsen P, Witte DR, Jørgensen T, Vaag A, Hansen T, Pedersen O (2010) Type 2 diabetes risk alleles near ADCY5, CDKAL1 and HHEX-IDE are associated with reduced birthweight. Diabetologia 53:1908–1916PubMedCrossRef
42.
go back to reference Zhao J, Li M, Bradfield JP, Wang K, Zhang H, Sleiman P, Kim CE, Annaiah K, Glaberson W, Glessner JT, Otieno FG, Thomas KA, Garris M, Hou C, Frackelton EC, Chiavacci RM, Berkowitz RI, Hakonarson H, Grant SF (2010) Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes 58:2414–2418CrossRef Zhao J, Li M, Bradfield JP, Wang K, Zhang H, Sleiman P, Kim CE, Annaiah K, Glaberson W, Glessner JT, Otieno FG, Thomas KA, Garris M, Hou C, Frackelton EC, Chiavacci RM, Berkowitz RI, Hakonarson H, Grant SF (2010) Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes 58:2414–2418CrossRef
43.
go back to reference Winkler C, Bonifacio E, Grallert H, Henneberger L, Illig T, Ziegler AG (2010) BMI at age 8 years is influenced by the type 2 diabetes susceptibility genes HHEX-IDE and CDKAL1. Diabetes 59:2063–2067PubMedCrossRef Winkler C, Bonifacio E, Grallert H, Henneberger L, Illig T, Ziegler AG (2010) BMI at age 8 years is influenced by the type 2 diabetes susceptibility genes HHEX-IDE and CDKAL1. Diabetes 59:2063–2067PubMedCrossRef
44.
go back to reference Walker M, Mari A, Jayapaul MK, Bennett SM, Ferrannini E (2005) Impaired beta cell glucose sensitivity and whole-body insulin sensitivity as predictors of hyperglycaemia in non-diabetic subjects. Diabetologia 48:2470–2476PubMedCrossRef Walker M, Mari A, Jayapaul MK, Bennett SM, Ferrannini E (2005) Impaired beta cell glucose sensitivity and whole-body insulin sensitivity as predictors of hyperglycaemia in non-diabetic subjects. Diabetologia 48:2470–2476PubMedCrossRef
45.
go back to reference Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, Akimoto Y, Nakamichi Y, Takanashi-Yanobu R, Nishiwaki C, Kawakami H, Kato N, Hisanaga S, Kakei M, Nagamatsu S (2010) Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS One 5:e15553PubMedCrossRef Ohara-Imaizumi M, Yoshida M, Aoyagi K, Saito T, Okamura T, Takenaka H, Akimoto Y, Nakamichi Y, Takanashi-Yanobu R, Nishiwaki C, Kawakami H, Kato N, Hisanaga S, Kakei M, Nagamatsu S (2010) Deletion of CDKAL1 affects mitochondrial ATP generation and first-phase insulin exocytosis. PLoS One 5:e15553PubMedCrossRef
46.
go back to reference Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Kruppeit-Drews P, Agullar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Eur J Physiol 453:703–718 PLoS One 5:e15553CrossRef Bryan J, Munoz A, Zhang X, Dufer M, Drews G, Kruppeit-Drews P, Agullar-Bryan L (2007) ABCC8 and ABCC9: ABC transporters that regulate K+ channels. Eur J Physiol 453:703–718 PLoS One 5:e15553CrossRef
Metadata
Title
The carriage of risk variants of CDKAL1 impairs beta-cell function in both diabetic and non-diabetic patients and reduces response to non-sulfonylurea and sulfonylurea agonists of the pancreatic KATP channel
Authors
Dimitry A. Chistiakov
V. A. Potapov
S. A. Smetanina
L. N. Bel’chikova
L. A. Suplotova
V. V. Nosikov
Publication date
01-09-2011
Publisher
Springer Milan
Published in
Acta Diabetologica / Issue 3/2011
Print ISSN: 0940-5429
Electronic ISSN: 1432-5233
DOI
https://doi.org/10.1007/s00592-011-0299-4

Other articles of this Issue 3/2011

Acta Diabetologica 3/2011 Go to the issue