Skip to main content
Top
Published in: European Spine Journal 9/2018

01-09-2018 | Original Article

Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery

Authors: Emmanuelle Ferrero, Keyvan Mazda, Anne-Laure Simon, Brice Ilharreborde

Published in: European Spine Journal | Issue 9/2018

Login to get access

Abstract

Purpose

Preoperative planning of scoliosis surgery is essential in the effective treatment of spine pathology. Thus, precontoured rods have been recently developed to avoid iatrogenic sagittal misalignment and rod breakage. Some specific issues exist in adolescent idiopathic scoliosis (AIS), such as a less distal lower instrumented level, a great variability in the location of inflection point (transition from lumbar lordosis to thoracic kyphosis), and sagittal correction is limited by both bone–implant interface. Since 2007, stereoradiographic imaging system is used and allows for 3D reconstructions. Therefore, a software was developed to perform preoperative 3D surgical planning and to provide rod’s shape and length. The goal of this preliminary study was to assess the feasibility, reliability, and the clinical relevance of this new software.

Methods

Retrospective study on 47 AIS patients operated with the same surgical technique: posteromedial translation through posterior approach with lumbar screws and thoracic sublaminar bands. Pre- and postoperatively, 3D reconstructions were performed on stereoradiographic images (EOS system, Paris, France) and compared. Then, the software was used to plan the surgical correction and determine rod’s shape and length. Simulated spine and rods were compared to postoperative real 3D reconstructions. 3D reconstructions and planning were performed by an independent observer.

Results

3D simulations were performed on the 47 patients. No difference was found between the simulated model and the postoperative 3D reconstructions in terms of sagittal parameters. Postoperatively, 21% of LL were not within reference values. Postoperative SVA was 20 mm anterior in 2/3 of the cases. Postoperative rods were significantly longer than precontoured rods planned with the software (mean 10 mm). Inflection points were different on the rods used and the planned rods (2.3 levels on average).

Conclusion

In this preliminary study, the software based on 3D stereoradiography low-dose system used to plan AIS surgery seems reliable for preoperative planning and precontoured rods. It is an interesting tool to improve surgeons’ practice, since 3D planning is expected to reduce complications such as iatrogenic malalignment and to help for a better understanding of the complications, choosing the location of the transitional vertebra. However, further work is needed to improve thoracic kyphosis planning.

Graphical abstract

These slides can be retrieved under Electronic Supplementary Material.
Appendix
Available only for authorised users
Literature
1.
go back to reference Somerville EW (1952) Rotational lordosis; the development of single curve. J Bone Jt Surg Br 34-B(3):421–427CrossRef Somerville EW (1952) Rotational lordosis; the development of single curve. J Bone Jt Surg Br 34-B(3):421–427CrossRef
2.
go back to reference Newton PO, Yaszay B, Upasani VV, Pawelek JB, Bastrom TP, Lenke LG et al (2010) Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine 35(14):1365–1370CrossRefPubMed Newton PO, Yaszay B, Upasani VV, Pawelek JB, Bastrom TP, Lenke LG et al (2010) Preservation of thoracic kyphosis is critical to maintain lumbar lordosis in the surgical treatment of adolescent idiopathic scoliosis. Spine 35(14):1365–1370CrossRefPubMed
3.
go back to reference Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W (2016) Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine 41(10):864–871CrossRefPubMed Pankowski R, Roclawski M, Ceynowa M, Mikulicz M, Mazurek T, Kloc W (2016) Direct vertebral rotation versus single concave rod rotation: low-dose intraoperative computed tomography evaluation of spine derotation in adolescent idiopathic scoliosis surgery. Spine 41(10):864–871CrossRefPubMed
4.
go back to reference Suk S-I, Kim J-H, Kim S-S, Lim D-J (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21(1):13–22CrossRefPubMed Suk S-I, Kim J-H, Kim S-S, Lim D-J (2012) Pedicle screw instrumentation in adolescent idiopathic scoliosis (AIS). Eur Spine J 21(1):13–22CrossRefPubMed
5.
go back to reference Lowenstein JE, Matsumoto H, Vitale MG, Weidenbaum M, Gomez JA, Lee FY-I et al (2007) Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine 32(4):448–452CrossRefPubMed Lowenstein JE, Matsumoto H, Vitale MG, Weidenbaum M, Gomez JA, Lee FY-I et al (2007) Coronal and sagittal plane correction in adolescent idiopathic scoliosis: a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine 32(4):448–452CrossRefPubMed
6.
go back to reference Hwang SW, Samdani AF, Tantorski M, Cahill P, Nydick J, Fine A et al (2011) Cervical sagittal plane decompensation after surgery for adolescent idiopathic scoliosis: an effect imparted by postoperative thoracic hypokyphosis. J Neurosurg Spine 15(5):491–496CrossRefPubMed Hwang SW, Samdani AF, Tantorski M, Cahill P, Nydick J, Fine A et al (2011) Cervical sagittal plane decompensation after surgery for adolescent idiopathic scoliosis: an effect imparted by postoperative thoracic hypokyphosis. J Neurosurg Spine 15(5):491–496CrossRefPubMed
7.
go back to reference Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Jt Surg Am 97(20):1694–1701CrossRef Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Jt Surg Am 97(20):1694–1701CrossRef
8.
go back to reference Brink RC, Schlösser TPC, Colo D, Vavruch L, van Stralen M, Vincken KL et al (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine 42(11):818–822CrossRefPubMed Brink RC, Schlösser TPC, Colo D, Vavruch L, van Stralen M, Vincken KL et al (2017) Anterior spinal overgrowth is the result of the scoliotic mechanism and is located in the disc. Spine 42(11):818–822CrossRefPubMed
9.
go back to reference Bagchi K, Mohaideen A, Thomson JD, Foley LC (2002) Hardware complications in scoliosis surgery. Pediatr Radiol 32(7):465–475CrossRefPubMed Bagchi K, Mohaideen A, Thomson JD, Foley LC (2002) Hardware complications in scoliosis surgery. Pediatr Radiol 32(7):465–475CrossRefPubMed
10.
go back to reference Albers HW, Hresko MT, Carlson J, Hall JE (2000) Comparison of single- and dual-rod techniques for posterior spinal instrumentation in the treatment of adolescent idiopathic scoliosis. Spine 25(15):1944–1949CrossRefPubMed Albers HW, Hresko MT, Carlson J, Hall JE (2000) Comparison of single- and dual-rod techniques for posterior spinal instrumentation in the treatment of adolescent idiopathic scoliosis. Spine 25(15):1944–1949CrossRefPubMed
11.
go back to reference Wattenbarger JM, Richards BS, Herring JA (2000) A comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine 25(13):1680–1688CrossRefPubMed Wattenbarger JM, Richards BS, Herring JA (2000) A comparison of single-rod instrumentation with double-rod instrumentation in adolescent idiopathic scoliosis. Spine 25(13):1680–1688CrossRefPubMed
12.
go back to reference Bago J, Ramirez M, Pellise F, Villanueva C (2003) Survivorship analysis of Cotrel–Dubousset instrumentation in idiopathic scoliosis. Eur Spine J 12(4):435–439CrossRefPubMedPubMedCentral Bago J, Ramirez M, Pellise F, Villanueva C (2003) Survivorship analysis of Cotrel–Dubousset instrumentation in idiopathic scoliosis. Eur Spine J 12(4):435–439CrossRefPubMedPubMedCentral
13.
go back to reference Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu K-MG, Keshavarzi S et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867CrossRefPubMed Smith JS, Shaffrey CI, Ames CP, Demakakos J, Fu K-MG, Keshavarzi S et al (2012) Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. Neurosurgery 71(4):862–867CrossRefPubMed
14.
go back to reference Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003CrossRefPubMed Smith JS, Shaffrey E, Klineberg E, Shaffrey CI, Lafage V, Schwab FJ et al (2014) Prospective multicenter assessment of risk factors for rod fracture following surgery for adult spinal deformity. J Neurosurg Spine 21(6):994–1003CrossRefPubMed
15.
go back to reference Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26(15):1668–1672CrossRefPubMed Dick JC, Bourgeault CA (2001) Notch sensitivity of titanium alloy, commercially pure titanium, and stainless steel spinal implants. Spine 26(15):1668–1672CrossRefPubMed
16.
go back to reference Nguyen T-Q, Buckley JM, Ames C, Deviren V (2011) The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng [H] 225(2):194–198CrossRef Nguyen T-Q, Buckley JM, Ames C, Deviren V (2011) The fatigue life of contoured cobalt chrome posterior spinal fusion rods. Proc Inst Mech Eng [H] 225(2):194–198CrossRef
17.
go back to reference Johnston CE, Ashman RB, Sherman MC, Eberle CF, Herndon WA, Sullivan JA et al (1987) Mechanical consequences of rod contouring and residual scoliosis in sublaminar segmental instrumentation. J Orthop Res 5(2):206–216CrossRefPubMed Johnston CE, Ashman RB, Sherman MC, Eberle CF, Herndon WA, Sullivan JA et al (1987) Mechanical consequences of rod contouring and residual scoliosis in sublaminar segmental instrumentation. J Orthop Res 5(2):206–216CrossRefPubMed
18.
go back to reference Lindsey C, Deviren V, Xu Z, Yeh R-F, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine 31(15):1680–1687CrossRefPubMed Lindsey C, Deviren V, Xu Z, Yeh R-F, Puttlitz CM (2006) The effects of rod contouring on spinal construct fatigue strength. Spine 31(15):1680–1687CrossRefPubMed
19.
go back to reference Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30(6):682–688CrossRefPubMed Glassman SD, Berven S, Bridwell K, Horton W, Dimar JR (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30(6):682–688CrossRefPubMed
20.
go back to reference Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029CrossRefPubMed Glassman SD, Bridwell K, Dimar JR, Horton W, Berven S, Schwab F (2005) The impact of positive sagittal balance in adult spinal deformity. Spine 30(18):2024–2029CrossRefPubMed
21.
go back to reference Schwab F, Farcy J-P, Bridwell K, Berven S, Glassman S, Harrast J et al (2006) A clinical impact classification of scoliosis in the adult. Spine 31(18):2109–2114CrossRefPubMed Schwab F, Farcy J-P, Bridwell K, Berven S, Glassman S, Harrast J et al (2006) A clinical impact classification of scoliosis in the adult. Spine 31(18):2109–2114CrossRefPubMed
22.
go back to reference Schwab F, Patel A, Ungar B, Farcy J-P, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35(25):2224–2231CrossRefPubMed Schwab F, Patel A, Ungar B, Farcy J-P, Lafage V (2010) Adult spinal deformity-postoperative standing imbalance: how much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 35(25):2224–2231CrossRefPubMed
23.
go back to reference Moal B, Schwab F, Ames CP, Smith JS, Ryan D, Mummaneni PV et al (2014) Radiographic outcomes of adult spinal deformity correction: a critical analysis of variability and failures across deformity patterns. Spine Deform 2(3):219–225CrossRefPubMed Moal B, Schwab F, Ames CP, Smith JS, Ryan D, Mummaneni PV et al (2014) Radiographic outcomes of adult spinal deformity correction: a critical analysis of variability and failures across deformity patterns. Spine Deform 2(3):219–225CrossRefPubMed
24.
go back to reference Clements DH, Marks M, Newton PO, Betz RR, Lenke L, Shufflebarger H et al (2011) Did the Lenke classification change scoliosis treatment? Spine 36(14):1142–1145CrossRefPubMed Clements DH, Marks M, Newton PO, Betz RR, Lenke L, Shufflebarger H et al (2011) Did the Lenke classification change scoliosis treatment? Spine 36(14):1142–1145CrossRefPubMed
25.
go back to reference Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703CrossRefPubMedPubMedCentral Le Huec JC, Charosky S, Barrey C, Rigal J, Aunoble S (2011) Sagittal imbalance cascade for simple degenerative spine and consequences: algorithm of decision for appropriate treatment. Eur Spine J 20(Suppl 5):699–703CrossRefPubMedPubMedCentral
26.
go back to reference Watanabe K, Nakamura T, Iwanami A, Hosogane N, Tsuji T, Ishii K et al (2012) Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine. BMC Musculoskelet Disord 13:99CrossRefPubMedPubMedCentral Watanabe K, Nakamura T, Iwanami A, Hosogane N, Tsuji T, Ishii K et al (2012) Vertebral derotation in adolescent idiopathic scoliosis causes hypokyphosis of the thoracic spine. BMC Musculoskelet Disord 13:99CrossRefPubMedPubMedCentral
27.
go back to reference Helenius I, Remes V, Yrjönen T, Ylikoski M, Schlenzka D, Helenius M et al (2003) Harrington and Cotrel–Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Jt Surg Am 85-A(12):2303–2309CrossRef Helenius I, Remes V, Yrjönen T, Ylikoski M, Schlenzka D, Helenius M et al (2003) Harrington and Cotrel–Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Jt Surg Am 85-A(12):2303–2309CrossRef
28.
go back to reference Lonner BS, Ren Y, Newton PO, Shah SA, Samdani AF, Shufflebarger HL et al (2017) Risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis—the pelvis and other considerations. Spine Deform 5(3):181–188CrossRefPubMed Lonner BS, Ren Y, Newton PO, Shah SA, Samdani AF, Shufflebarger HL et al (2017) Risk factors of proximal junctional kyphosis in adolescent idiopathic scoliosis—the pelvis and other considerations. Spine Deform 5(3):181–188CrossRefPubMed
29.
go back to reference Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 22(2):296–304CrossRefPubMed Wade R, Yang H, McKenna C, Faria R, Gummerson N, Woolacott N (2013) A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 22(2):296–304CrossRefPubMed
30.
go back to reference Hirsch C, Ilharreborde B, Mazda K (2015) EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J 24(7):1408–1414CrossRefPubMed Hirsch C, Ilharreborde B, Mazda K (2015) EOS suspension test for the assessment of spinal flexibility in adolescent idiopathic scoliosis. Eur Spine J 24(7):1408–1414CrossRefPubMed
31.
go back to reference Ilharreborde B, Sebag G, Skalli W, Mazda K (2013) Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J 22(11):2382–2391CrossRefPubMedPubMedCentral Ilharreborde B, Sebag G, Skalli W, Mazda K (2013) Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J 22(11):2382–2391CrossRefPubMedPubMedCentral
32.
go back to reference Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine 35(22):E1193–E1198CrossRefPubMed Mac-Thiong J-M, Roussouly P, Berthonnaud E, Guigui P (2010) Sagittal parameters of global spinal balance: normative values from a prospective cohort of seven hundred nine Caucasian asymptomatic adults. Spine 35(22):E1193–E1198CrossRefPubMed
33.
go back to reference Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Jt Surg Am 87(2):260–267CrossRef Vialle R, Levassor N, Rillardon L, Templier A, Skalli W, Guigui P (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Jt Surg Am 87(2):260–267CrossRef
34.
go back to reference Schwab F, Lafage V, Patel A, Farcy J-P (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine 34(17):1828–1833CrossRefPubMed Schwab F, Lafage V, Patel A, Farcy J-P (2009) Sagittal plane considerations and the pelvis in the adult patient. Spine 34(17):1828–1833CrossRefPubMed
35.
go back to reference Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy J-PC, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387–392CrossRefPubMed Schwab FJ, Smith VA, Biserni M, Gamez L, Farcy J-PC, Pagala M (2002) Adult scoliosis: a quantitative radiographic and clinical analysis. Spine 27(4):387–392CrossRefPubMed
36.
go back to reference Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599–E606CrossRefPubMed Lafage V, Schwab F, Patel A, Hawkinson N, Farcy J-P (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine 34(17):E599–E606CrossRefPubMed
37.
go back to reference Ilharreborde B, Hirsch C, Presedo A, Penneçot G-F, Mazda K (2012) Circumferential fusion with anterior strut grafting and short-segment multipoint posterior fixation for burst fractures in skeletally immature patients: a preliminary report. J Pediatr Orthop 32(5):440–444CrossRefPubMed Ilharreborde B, Hirsch C, Presedo A, Penneçot G-F, Mazda K (2012) Circumferential fusion with anterior strut grafting and short-segment multipoint posterior fixation for burst fractures in skeletally immature patients: a preliminary report. J Pediatr Orthop 32(5):440–444CrossRefPubMed
38.
go back to reference Salmingo RA, Tadano S, Abe Y, Ito M (2014) Influence of implant rod curvature on sagittal correction of scoliosis deformity. Spine J 14(8):1432–1439CrossRefPubMed Salmingo RA, Tadano S, Abe Y, Ito M (2014) Influence of implant rod curvature on sagittal correction of scoliosis deformity. Spine J 14(8):1432–1439CrossRefPubMed
39.
go back to reference Hey HWD, Wong GC, Chan CX, Lau L-L, Kumar N, Thambiah JS et al (2017) Reproducibility of sagittal radiographic parameters in adolescent idiopathic scoliosis—a guide to reference values using serial imaging. Spine J 17(6):830–836CrossRefPubMed Hey HWD, Wong GC, Chan CX, Lau L-L, Kumar N, Thambiah JS et al (2017) Reproducibility of sagittal radiographic parameters in adolescent idiopathic scoliosis—a guide to reference values using serial imaging. Spine J 17(6):830–836CrossRefPubMed
40.
go back to reference Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng ABM (2008) Preoperative planning simulator for spinal deformity surgeries. Spine 33(20):2143–2152CrossRefPubMed Aubin CE, Labelle H, Chevrefils C, Desroches G, Clin J, Eng ABM (2008) Preoperative planning simulator for spinal deformity surgeries. Spine 33(20):2143–2152CrossRefPubMed
41.
go back to reference Lavelle WF, Beltran AA, Carl AL, Uhl RL, Hesham K, Albanese SA (2016) Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel–Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord 11:18CrossRefPubMedPubMedCentral Lavelle WF, Beltran AA, Carl AL, Uhl RL, Hesham K, Albanese SA (2016) Fifteen to twenty-five year functional outcomes of twenty-two patients treated with posterior Cotrel–Dubousset type instrumentation: a limited but detailed review of outcomes. Scoliosis Spinal Disord 11:18CrossRefPubMedPubMedCentral
42.
go back to reference Merriman M, Hu C, Noyes K, Sanders J (2015) Selection of the lowest level for fusion in adolescent idiopathic scoliosis—a systematic review and meta-analysis. Spine Deform 3(2):128–135CrossRefPubMed Merriman M, Hu C, Noyes K, Sanders J (2015) Selection of the lowest level for fusion in adolescent idiopathic scoliosis—a systematic review and meta-analysis. Spine Deform 3(2):128–135CrossRefPubMed
43.
go back to reference Larson AN, Fletcher ND, Daniel C, Richards BS (2012) Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine 37(10):833–839CrossRefPubMed Larson AN, Fletcher ND, Daniel C, Richards BS (2012) Lumbar curve is stable after selective thoracic fusion for adolescent idiopathic scoliosis: a 20-year follow-up. Spine 37(10):833–839CrossRefPubMed
Metadata
Title
Preliminary experience with SpineEOS, a new software for 3D planning in AIS surgery
Authors
Emmanuelle Ferrero
Keyvan Mazda
Anne-Laure Simon
Brice Ilharreborde
Publication date
01-09-2018
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2018
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-018-5591-3

Other articles of this Issue 9/2018

European Spine Journal 9/2018 Go to the issue