Skip to main content
Top
Published in: European Spine Journal 9/2017

01-09-2017 | Original Article

Cervical spine bone density in young healthy adults as a function of sex, vertebral level and anatomic location

Authors: William J. Anderst, Tyler West, William F. Donaldson III, Joon Y. Lee

Published in: European Spine Journal | Issue 9/2017

Login to get access

Abstract

Purpose

Bone mineral density (BMD) measured using quantitative computed tomography (QCT) has been shown to correlate with bone mechanical properties. Knowledge of BMD within specific anatomic regions of the spine is valuable to surgeons who must secure instrumentation to the vertebrae, to medical device developers who design screws and disc replacements, and to researchers who assign mechanical properties to computational models. The objective of this study was to comprehensively characterize BMD in the cervical spine of young healthy adults.

Methods

QCT was used to determine BMD in the cervical spines of 31 healthy adults (age 20–35). Subject-specific 3D models of each vertebra were created from CT scans, and anatomic regions of interest were identified in each bone (C1: 3 regions; C2: 9 regions, C3–C7: 13 regions). Statistical tests were performed to identify differences in BMD according to vertebral level, anatomic regions within vertebrae, and sex.

Results

BMD varied significantly among vertebral levels and among anatomic regions within each vertebra. Females had higher BMD than males (p = .041) primarily due to higher BMD in the posterior regions of each vertebra.

Conclusions

These data can serve as a baseline to identify BMD changes in older and symptomatic patients. This data set is also the first report of volumetric bone density within different anatomic regions of the atlas and axis of the cervical spine. The finding of higher BMD in females is in agreement with the previous QCT results but contradicts DEXA results that are known to be dependent upon bone size.
Literature
1.
2.
go back to reference Pospiech J, Stolke D, Wilke HJ, Claes LE (1999) Intradiscal pressure recordings in the cervical spine. Neurosurgery 44(2):379–384 (discussion 384–375) CrossRefPubMed Pospiech J, Stolke D, Wilke HJ, Claes LE (1999) Intradiscal pressure recordings in the cervical spine. Neurosurgery 44(2):379–384 (discussion 384–375) CrossRefPubMed
3.
go back to reference Goel VK, Clausen JD (1998) Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine (Phila Pa 1976) 23(6):684–691CrossRef Goel VK, Clausen JD (1998) Prediction of load sharing among spinal components of a C5–C6 motion segment using the finite element approach. Spine (Phila Pa 1976) 23(6):684–691CrossRef
4.
go back to reference Wolff J (1986) The law of bone remodeling (trans: Maquet P, Furlong R). Springer, BerlinCrossRef Wolff J (1986) The law of bone remodeling (trans: Maquet P, Furlong R). Springer, BerlinCrossRef
5.
go back to reference Curylo LJ, Lindsey RW, Doherty BJ, LeBlanc A (1996) Segmental variations of bone mineral density in the cervical spine. Spine (Phila Pa 1976) 21(3):319–322CrossRef Curylo LJ, Lindsey RW, Doherty BJ, LeBlanc A (1996) Segmental variations of bone mineral density in the cervical spine. Spine (Phila Pa 1976) 21(3):319–322CrossRef
6.
go back to reference Yoganandan N, Pintar F, Wilson CR, Sances A Jr (1990) In vitro biomechanical study of female geriatric cervical vertebral bodies. J Biomed Eng 12(2):97–101CrossRefPubMed Yoganandan N, Pintar F, Wilson CR, Sances A Jr (1990) In vitro biomechanical study of female geriatric cervical vertebral bodies. J Biomed Eng 12(2):97–101CrossRefPubMed
9.
go back to reference Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW (2010) Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976) 35(19):E925–E931. doi:10.1097/BRS.0b013e3181c5fb21 CrossRef Zhuang XM, Yu BS, Zheng ZM, Zhang JF, Lu WW (2010) Effect of the degree of osteoporosis on the biomechanical anchoring strength of the sacral pedicle screws: an in vitro comparison between unaugmented bicortical screws and polymethylmethacrylate augmented unicortical screws. Spine (Phila Pa 1976) 35(19):E925–E931. doi:10.​1097/​BRS.​0b013e3181c5fb21​ CrossRef
11.
go back to reference Ryken TC, Clausen JD, Traynelis VC, Goel VK (1995) Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg 83(2):325–329CrossRefPubMed Ryken TC, Clausen JD, Traynelis VC, Goel VK (1995) Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws. J Neurosurg 83(2):325–329CrossRefPubMed
13.
go back to reference Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13(11):1783–1790. doi:10.1359/jbmr.1998.13.11.1783 CrossRefPubMed Jiang Y, Zhao J, Augat P, Ouyang X, Lu Y, Majumdar S, Genant HK (1998) Trabecular bone mineral and calculated structure of human bone specimens scanned by peripheral quantitative computed tomography: relation to biomechanical properties. J Bone Miner Res 13(11):1783–1790. doi:10.​1359/​jbmr.​1998.​13.​11.​1783 CrossRefPubMed
15.
go back to reference Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11–12):1055–1061 (pii:0021-9290(87)90023-6) CrossRefPubMed Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11–12):1055–1061 (pii:0021-9290(87)90023-6) CrossRefPubMed
16.
go back to reference Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine (Phila Pa 1976) 21(22):2558–2569CrossRef Oxland TR, Lund T, Jost B, Cripton P, Lippuner K, Jaeger P, Nolte LP (1996) The relative importance of vertebral bone density and disc degeneration in spinal flexibility and interbody implant performance. An in vitro study. Spine (Phila Pa 1976) 21(22):2558–2569CrossRef
17.
go back to reference Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine (Phila Pa 1976) 26(9):1028–1037CrossRef Kandziora F, Pflugmacher R, Scholz M, Schnake K, Lucke M, Schroder R, Mittlmeier T (2001) Comparison between sheep and human cervical spines: an anatomic, radiographic, bone mineral density, and biomechanical study. Spine (Phila Pa 1976) 26(9):1028–1037CrossRef
18.
go back to reference Yoganandan N, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, Paskoff G (2006) Bone mineral density of human female cervical and lumbar spines from quantitative computed tomography. Spine (Phila Pa 1976) 31(1):73–76 (pii:00007632-200601010-00017) CrossRef Yoganandan N, Pintar FA, Stemper BD, Baisden JL, Aktay R, Shender BS, Paskoff G (2006) Bone mineral density of human female cervical and lumbar spines from quantitative computed tomography. Spine (Phila Pa 1976) 31(1):73–76 (pii:00007632-200601010-00017) CrossRef
19.
go back to reference Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97(5):699–705CrossRefPubMed Genant HK, Cann CE, Ettinger B, Gordan GS (1982) Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 97(5):699–705CrossRefPubMed
20.
go back to reference Laval-Jeantet AM, Cann CE, Roger B, Dallant P (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8(6):1164–1167CrossRefPubMed Laval-Jeantet AM, Cann CE, Roger B, Dallant P (1984) A postprocessing dual energy technique for vertebral CT densitometry. J Comput Assist Tomogr 8(6):1164–1167CrossRefPubMed
22.
go back to reference Ritzel H, Amling M, Posl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12(1):89–95. doi:10.1359/jbmr.1997.12.1.89 CrossRefPubMed Ritzel H, Amling M, Posl M, Hahn M, Delling G (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 12(1):89–95. doi:10.​1359/​jbmr.​1997.​12.​1.​89 CrossRefPubMed
24.
go back to reference Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18(15):2167–2173CrossRefPubMed Baba H, Furusawa N, Imura S, Kawahara N, Tsuchiya H, Tomita K (1993) Late radiographic findings after anterior cervical fusion for spondylotic myeloradiculopathy. Spine 18(15):2167–2173CrossRefPubMed
25.
go back to reference Bohlman HH, Emery SE, Goodfellow DB, Jones PK (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Jt Surg 75(9):1298–1307CrossRef Bohlman HH, Emery SE, Goodfellow DB, Jones PK (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Jt Surg 75(9):1298–1307CrossRef
26.
go back to reference Friedenberg ZB, Miller WT (1963) Degenerative disc disease of the cervical spine. J Bone Jt Surg 45:1171–1178CrossRef Friedenberg ZB, Miller WT (1963) Degenerative disc disease of the cervical spine. J Bone Jt Surg 45:1171–1178CrossRef
27.
go back to reference Iatridis JC, MacLean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Jt Surg 88(Suppl 2):41–46. doi:10.2106/JBJS.E.01407 Iatridis JC, MacLean JJ, Roughley PJ, Alini M (2006) Effects of mechanical loading on intervertebral disc metabolism in vivo. J Bone Jt Surg 88(Suppl 2):41–46. doi:10.​2106/​JBJS.​E.​01407
28.
go back to reference Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 29(23):2724–2732CrossRef Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 29(23):2724–2732CrossRef
29.
30.
go back to reference Smith EL, Gilligan C (1996) Dose-response relationship between physical loading and mechanical competence of bone. Bone 18(1 Suppl):455–505PubMed Smith EL, Gilligan C (1996) Dose-response relationship between physical loading and mechanical competence of bone. Bone 18(1 Suppl):455–505PubMed
33.
35.
go back to reference Bonnick S (1998) Bone densitometry in clinical practice: application and interpretation. Humana, Totowa Bonnick S (1998) Bone densitometry in clinical practice: application and interpretation. Humana, Totowa
36.
40.
go back to reference Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12(5):697–711. doi:10.1359/jbmr.1997.12.5.697 CrossRefPubMed Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer CC, Lu Y, Chavez M (1997) Comparisons of noninvasive bone mineral measurements in assessing age-related loss, fracture discrimination, and diagnostic classification. J Bone Miner Res 12(5):697–711. doi:10.​1359/​jbmr.​1997.​12.​5.​697 CrossRefPubMed
42.
43.
go back to reference Zink PM (1996) Performance of ventral spondylodesis screws in cervical vertebrae of varying bone mineral density. Spine (Phila Pa 1976) 21(1):45–52CrossRef Zink PM (1996) Performance of ventral spondylodesis screws in cervical vertebrae of varying bone mineral density. Spine (Phila Pa 1976) 21(1):45–52CrossRef
44.
go back to reference Eysel P, Schwitalle M, Oberstein A, Rompe JD, Hopf C, Kullmer K (1998) Preoperative estimation of screw fixation strength in vertebral bodies. Spine (Phila Pa 1976) 23(2):174–180CrossRef Eysel P, Schwitalle M, Oberstein A, Rompe JD, Hopf C, Kullmer K (1998) Preoperative estimation of screw fixation strength in vertebral bodies. Spine (Phila Pa 1976) 23(2):174–180CrossRef
45.
go back to reference Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118(3):391–398CrossRefPubMed Chapman JR, Harrington RM, Lee KM, Anderson PA, Tencer AF, Kowalski D (1996) Factors affecting the pullout strength of cancellous bone screws. J Biomech Eng 118(3):391–398CrossRefPubMed
46.
go back to reference Ryken TC, Goel VK, Clausen JD, Traynelis VC (1995) Assessment of unicortical and bicortical fixation in a quasistatic cadaveric model. Role of bone mineral density and screw torque. Spine (Phila Pa 1976) 20(17):1861–1867CrossRef Ryken TC, Goel VK, Clausen JD, Traynelis VC (1995) Assessment of unicortical and bicortical fixation in a quasistatic cadaveric model. Role of bone mineral density and screw torque. Spine (Phila Pa 1976) 20(17):1861–1867CrossRef
47.
go back to reference Heller JG, Estes BT, Zaouali M, Diop A (1996) Biomechanical study of screws in the lateral masses: variables affecting pull-out resistance. J Bone Jt Surg Am 78(9):1315–1321CrossRef Heller JG, Estes BT, Zaouali M, Diop A (1996) Biomechanical study of screws in the lateral masses: variables affecting pull-out resistance. J Bone Jt Surg Am 78(9):1315–1321CrossRef
Metadata
Title
Cervical spine bone density in young healthy adults as a function of sex, vertebral level and anatomic location
Authors
William J. Anderst
Tyler West
William F. Donaldson III
Joon Y. Lee
Publication date
01-09-2017
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 9/2017
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-017-5119-2

Other articles of this Issue 9/2017

European Spine Journal 9/2017 Go to the issue