Skip to main content
Top
Published in: European Spine Journal 7/2013

01-07-2013 | Original Article

Sagittal geometry of the middle and lower cervical endplates

Authors: Hong Chen, Jian Zhong, Jixiang Tan, Dandong Wu, Dianming Jiang

Published in: European Spine Journal | Issue 7/2013

Login to get access

Abstract

Purpose

Construct subsidence is a relatively common complication following anterior cervical fusion. Its occurrence has been revealed to be closely related to endplate-implant contact interface. But current literature focusing on the anatomy of cervical endplate is very scarce. The purpose of this morphometric study was to analyse the sagittal geometry, especially the concavity and slope, of vertebral endplates from C3 to C7 by employing data from CT scans.

Methods

Reformatted CT scans of 97 individuals were analyzed and endplate concavity depth, endplate concavity apex location, as well as endplate slope were measured in midsagittal plane. Those specific parameters were compared among different age and gender groups. Meanwhile, comparison between superior and inferior endplate of each vertebra was also performed.

Results

Age and gender did not influence endplate concavity depth, endplate concavity apex location, or endplate slope significantly (P > 0.05). Endplate concavity depths of superior endplates (range 0.9–1.2 mm) were significantly smaller than those of inferior endplates (range 2.1–2.7 mm). Endplate concavity apex was always located in the posterior half of the endplate, with the superior one ranged from 56 to 67 % and the inferior one 52 to 57 %. Average endplate slopes of superior endplates were between 4.5° and 9.0°, and average inferior endplate slopes ranged from 4.5° to 7.5°. Among all measured segments, C5 had the largest endplate slope values, while C7 the least.

Conclusions

Superior endplate is more flat than its inferior counterpart in middle and lower cervical spine, and the concavity apex is always located in the posterior half of the endplate. Endplate slope is correlated with cervical curvature, greater slope implying more significant lordosis. These sagittal endplate geometrical parameters should be taken into consideration when investigating implant subsidence following anterior cervical fusion.
Literature
1.
go back to reference Bohlman HH, Emery SE, Goodfellow DB, Jones PK (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am 75:1298–1307PubMed Bohlman HH, Emery SE, Goodfellow DB, Jones PK (1993) Robinson anterior cervical discectomy and arthrodesis for cervical radiculopathy. Long-term follow-up of one hundred and twenty-two patients. J Bone Joint Surg Am 75:1298–1307PubMed
2.
go back to reference Emery SE, Bolesta MJ, Banks MA, Jones PK (1994) Robinson anterior cervical fusion comparison of the standard and modified techniques. Spine 19:660–663PubMedCrossRef Emery SE, Bolesta MJ, Banks MA, Jones PK (1994) Robinson anterior cervical fusion comparison of the standard and modified techniques. Spine 19:660–663PubMedCrossRef
3.
go back to reference van Jonbergen HP, Spruit M, Anderson PG, Pavlov PW (2005) Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J 5:645–649 discussion 649PubMedCrossRef van Jonbergen HP, Spruit M, Anderson PG, Pavlov PW (2005) Anterior cervical interbody fusion with a titanium box cage: early radiological assessment of fusion and subsidence. Spine J 5:645–649 discussion 649PubMedCrossRef
4.
go back to reference Kao FC, Niu CC, Chen LH, Lai PL, Chen WJ (2005) Maintenance of interbody space in one- and two-level anterior cervical interbody fusion: comparison of the effectiveness of autograft, allograft, and cage. Clin Orthopaed Relat Res 430:108–116CrossRef Kao FC, Niu CC, Chen LH, Lai PL, Chen WJ (2005) Maintenance of interbody space in one- and two-level anterior cervical interbody fusion: comparison of the effectiveness of autograft, allograft, and cage. Clin Orthopaed Relat Res 430:108–116CrossRef
5.
go back to reference Grob D, Daehn S, Mannion AF (2005) Titanium mesh cages (TMC) in spine surgery. Eur Spine J 14:211–221PubMedCrossRef Grob D, Daehn S, Mannion AF (2005) Titanium mesh cages (TMC) in spine surgery. Eur Spine J 14:211–221PubMedCrossRef
6.
go back to reference Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, Chiou TL, Chang YL, Su CF, Lin SZ, Chen SY (2008) Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci 15:1240–1245PubMedCrossRef Chou YC, Chen DC, Hsieh WA, Chen WF, Yen PS, Harnod T, Chiou TL, Chang YL, Su CF, Lin SZ, Chen SY (2008) Efficacy of anterior cervical fusion: comparison of titanium cages, polyetheretherketone (PEEK) cages and autogenous bone grafts. J Clin Neurosci 15:1240–1245PubMedCrossRef
7.
go back to reference Niu CC, Liao JC, Chen WJ, Chen LH (2012) Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spinal Disord Tech 23:310–316CrossRef Niu CC, Liao JC, Chen WJ, Chen LH (2012) Outcomes of interbody fusion cages used in 1 and 2-levels anterior cervical discectomy and fusion: titanium cages versus polyetheretherketone (PEEK) cages. J Spinal Disord Tech 23:310–316CrossRef
8.
go back to reference Barsa P, Suchomel P (2007) Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J 16:1395–1400PubMedCrossRef Barsa P, Suchomel P (2007) Factors affecting sagittal malalignment due to cage subsidence in standalone cage assisted anterior cervical fusion. Eur Spine J 16:1395–1400PubMedCrossRef
9.
go back to reference Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172PubMedCrossRef Cabraja M, Oezdemir S, Koeppen D, Kroppenstedt S (2012) Anterior cervical discectomy and fusion: comparison of titanium and polyetheretherketone cages. BMC Musculoskelet Disord 13:172PubMedCrossRef
10.
go back to reference Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL (2009) Interbody device endplate engagement effects on motion segment biomechanics. Spine J 9:564–573PubMedCrossRef Buttermann GR, Beaubien BP, Freeman AL, Stoll JE, Chappuis JL (2009) Interbody device endplate engagement effects on motion segment biomechanics. Spine J 9:564–573PubMedCrossRef
11.
go back to reference Kim MK, Kwak DS, Park CK, Park SH, Oh SM, Lee SW, Han SH (2007) Quantitative anatomy of the endplate of the middle and lower cervical vertebrae in Koreans. Spine 32:E376–E381PubMedCrossRef Kim MK, Kwak DS, Park CK, Park SH, Oh SM, Lee SW, Han SH (2007) Quantitative anatomy of the endplate of the middle and lower cervical vertebrae in Koreans. Spine 32:E376–E381PubMedCrossRef
12.
go back to reference Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146PubMedCrossRef Tan SH, Teo EC, Chua HC (2004) Quantitative three-dimensional anatomy of cervical, thoracic and lumbar vertebrae of Chinese Singaporeans. Eur Spine J 13:137–146PubMedCrossRef
13.
go back to reference Van Ooij A, Oner F, Verbout A (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech 16:369–383PubMedCrossRef Van Ooij A, Oner F, Verbout A (2003) Complications of artificial disc replacement: a report of 27 patients with the SB Charite disc. J Spinal Disord Tech 16:369–383PubMedCrossRef
14.
go back to reference Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225PubMedCrossRef Edwards WT, Zheng Y, Ferrara LA, Yuan HA (2001) Structural features and thickness of the vertebral cortex in the thoracolumbar spine. Spine 26:218–225PubMedCrossRef
15.
go back to reference Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J Suppl 2:S160–S164CrossRef Lakshmanan P, Purushothaman B, Dvorak V, Schratt W, Thambiraj S, Boszczyk M (2012) Sagittal endplate morphology of the lower lumbar spine. Eur Spine J Suppl 2:S160–S164CrossRef
16.
go back to reference Chen H, Jiang D, Ou Y, Zhong J, Lv F (2011) Geometry of thoracolumbar vertebral endplates of the human spine. Eur Spine J 20:1814–1820PubMedCrossRef Chen H, Jiang D, Ou Y, Zhong J, Lv F (2011) Geometry of thoracolumbar vertebral endplates of the human spine. Eur Spine J 20:1814–1820PubMedCrossRef
17.
go back to reference van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JG, van Ooijen PM, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38:33–40PubMedCrossRef van der Houwen EB, Baron P, Veldhuizen AG, Burgerhof JG, van Ooijen PM, Verkerke GJ (2010) Geometry of the intervertebral volume and vertebral endplates of the human spine. Ann Biomed Eng 38:33–40PubMedCrossRef
18.
go back to reference Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175PubMedCrossRef Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175PubMedCrossRef
19.
go back to reference Lowe TG, Hashim S, Wilson LA, O’Brien MF, Smith DA, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394PubMedCrossRef Lowe TG, Hashim S, Wilson LA, O’Brien MF, Smith DA, Diekmann MJ, Trommeter J (2004) A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support. Spine 29:2389–2394PubMedCrossRef
20.
go back to reference Twomey LT, Taylor JR (1987) Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop Relat Res 224:97–104PubMed Twomey LT, Taylor JR (1987) Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop Relat Res 224:97–104PubMed
21.
go back to reference Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J Suppl 2:S97–S103CrossRef Ferguson SJ, Steffen T (2003) Biomechanics of the aging spine. Eur Spine J Suppl 2:S97–S103CrossRef
22.
go back to reference Miao S, Sha GZ, Wang YD, Yan LQ, Song LY, Guo Z, Fan L, Shao L (2008) Imageology change of degenerative cartilage endplate to different degree and its clinical significance. Zhongguo Gu Shang 21:414–417PubMed Miao S, Sha GZ, Wang YD, Yan LQ, Song LY, Guo Z, Fan L, Shao L (2008) Imageology change of degenerative cartilage endplate to different degree and its clinical significance. Zhongguo Gu Shang 21:414–417PubMed
23.
go back to reference He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, Huang D (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine 37:E1068–E1073PubMedCrossRef He X, Liang A, Gao W, Peng Y, Zhang L, Liang G, Huang D (2012) The relationship between concave angle of vertebral endplate and lumbar intervertebral disc degeneration. Spine 37:E1068–E1073PubMedCrossRef
24.
go back to reference Buttermann GR, Freeman AL, Beaubien BP (2010) In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates. Spine J 10:1024–1031PubMedCrossRef Buttermann GR, Freeman AL, Beaubien BP (2010) In vitro biomechanics of an expandable vertebral body replacement with self-adjusting end plates. Spine J 10:1024–1031PubMedCrossRef
25.
go back to reference Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine 29:1413–1419PubMedCrossRef Pflugmacher R, Schleicher P, Schaefer J, Scholz M, Ludwig K, Khodadadyan-Klostermann C, Haas NP, Kandziora F (2004) Biomechanical comparison of expandable cages for vertebral body replacement in the thoracolumbar spine. Spine 29:1413–1419PubMedCrossRef
Metadata
Title
Sagittal geometry of the middle and lower cervical endplates
Authors
Hong Chen
Jian Zhong
Jixiang Tan
Dandong Wu
Dianming Jiang
Publication date
01-07-2013
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 7/2013
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-013-2791-8

Other articles of this Issue 7/2013

European Spine Journal 7/2013 Go to the issue