Skip to main content
Top
Published in: European Spine Journal 6/2012

01-08-2012 | Original Article

Intraoperative determination of the load–displacement behavior of scoliotic spinal motion segments: preliminary clinical results

Authors: Christoph Reutlinger, Carol Hasler, Klaus Scheffler, Philippe Büchler

Published in: European Spine Journal | Special Issue 6/2012

Login to get access

Abstract

Introduction

Spinal fusion is a widely and successfully performed strategy for the treatment of spinal deformities and degenerative diseases. The general approach has been to stabilize the spine with implants so that a solid bony fusion between the vertebrae can develop. However, new implant designs have emerged that aim at preservation or restoration of the motion of the spinal segment. In addition to static, load sharing principles, these designs also require a profound knowledge of kinematic and dynamic properties to properly characterise the in vivo performance of the implants.

Methods

To address this, an apparatus was developed that enables the intraoperative determination of the load–displacement behavior of spinal motion segments. The apparatus consists of a sensor-equipped distractor to measure the applied force between the transverse processes, and an optoelectronic camera to track the motion of vertebrae and the distractor. In this intraoperative trial, measurements from two patients with adolescent idiopathic scoliosis with right thoracic curves were made at four motion segments each.

Results

At a lateral bending moment of 5 N m, the mean flexibility of all eight motion segments was 0.18 ± 0.08°/N m on the convex side and 0.24 ± 0.11°/N m on the concave side.

Discussion

The results agree with published data obtained from cadaver studies with and without axial preload. Intraoperatively acquired data with this method may serve as an input for mathematical models and contribute to the development of new implants and treatment strategies.
Literature
1.
go back to reference Brown MD, Holmes DC, Heiner AD, Wehman KF (2002) Intraoperative measurement of lumbar spine motion segment stiffness. Spine (Phila Pa 1976) 27(9):954–958CrossRef Brown MD, Holmes DC, Heiner AD, Wehman KF (2002) Intraoperative measurement of lumbar spine motion segment stiffness. Spine (Phila Pa 1976) 27(9):954–958CrossRef
2.
go back to reference Busscher I, van Dieën JH, Kingma I, van der Veen AJ, Verkerke GJ, Veldhuizen AG (2009) Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34(26):2858–2864CrossRef Busscher I, van Dieën JH, Kingma I, van der Veen AJ, Verkerke GJ, Veldhuizen AG (2009) Biomechanical characteristics of different regions of the human spine: an in vitro study on multilevel spinal segments. Spine (Phila Pa 1976) 34(26):2858–2864CrossRef
3.
go back to reference Chang LY, Pollard NS (2007) Robust estimation of dominant axis of rotation. J Biomech 40(12):2707–2715PubMedCrossRef Chang LY, Pollard NS (2007) Robust estimation of dominant axis of rotation. J Biomech 40(12):2707–2715PubMedCrossRef
4.
go back to reference Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23(23):2545–2551CrossRef Duance VC, Crean JK, Sims TJ, Avery N, Smith S, Menage J, Eisenstein SM, Roberts S (1998) Changes in collagen cross-linking in degenerative disc disease and scoliosis. Spine (Phila Pa 1976) 23(23):2545–2551CrossRef
5.
go back to reference Ebara S, Harada T, Hosono N, Inoue M, Tanaka M, Morimoto Y, Ono K (1992) Intraoperative measurement of lumbar spinal instability. Spine (Phila Pa 1976) 17(3 Suppl):S44–S50CrossRef Ebara S, Harada T, Hosono N, Inoue M, Tanaka M, Morimoto Y, Ono K (1992) Intraoperative measurement of lumbar spinal instability. Spine (Phila Pa 1976) 17(3 Suppl):S44–S50CrossRef
6.
go back to reference Eguizabal J, Tufaga M, Scheer JK, Ames C, Lotz JC, Buckley JM (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425PubMedCrossRef Eguizabal J, Tufaga M, Scheer JK, Ames C, Lotz JC, Buckley JM (2010) Pure moment testing for spinal biomechanics applications: fixed versus sliding ring cable-driven test designs. J Biomech 43(7):1422–1425PubMedCrossRef
7.
go back to reference Gédet P, Thistlethwaite PA, Ferguson SJ (2007) Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech 40(8):1881–1885PubMedCrossRef Gédet P, Thistlethwaite PA, Ferguson SJ (2007) Minimizing errors during in vitro testing of multisegmental spine specimens: considerations for component selection and kinematic measurement. J Biomech 40(8):1881–1885PubMedCrossRef
8.
go back to reference Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A(7):1497–1503PubMed Ghiselli G, Wang JC, Bhatia NN, Hsu WK, Dawson EG (2004) Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 86-A(7):1497–1503PubMed
9.
go back to reference Ghista DN, Viviani GR, Subbaraj K, Lozada PJ, Srinivasan TM, Barnes G (1988) Biomechanical basis of optimal scoliosis surgical correction. J Biomech 21(2):77–88PubMedCrossRef Ghista DN, Viviani GR, Subbaraj K, Lozada PJ, Srinivasan TM, Barnes G (1988) Biomechanical basis of optimal scoliosis surgical correction. J Biomech 21(2):77–88PubMedCrossRef
10.
go back to reference Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Calenbergh FV, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17(2):79–85PubMedCrossRef Goffin J, Geusens E, Vantomme N, Quintens E, Waerzeggers Y, Depreitere B, Calenbergh FV, van Loon J (2004) Long-term follow-up after interbody fusion of the cervical spine. J Spinal Disord Tech 17(2):79–85PubMedCrossRef
11.
go back to reference Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment–rotation responses of the human lumbosacral spinal column. J Biomech 40(9):1975–1980PubMedCrossRef Guan Y, Yoganandan N, Moore J, Pintar FA, Zhang J, Maiman DJ, Laud P (2007) Moment–rotation responses of the human lumbosacral spinal column. J Biomech 40(9):1975–1980PubMedCrossRef
12.
go back to reference Hasegewa K, Kitahara K, Hara T, T K, Shimoda H (2009) Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur Spine J 18(4):465–470PubMedCrossRef Hasegewa K, Kitahara K, Hara T, T K, Shimoda H (2009) Biomechanical evaluation of segmental instability in degenerative lumbar spondylolisthesis. Eur Spine J 18(4):465–470PubMedCrossRef
13.
go back to reference Heuer F, Schmidt H, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech 40(4):795–803PubMedCrossRef Heuer F, Schmidt H, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase vertebral translation and intradiscal pressure. J Biomech 40(4):795–803PubMedCrossRef
14.
go back to reference Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280PubMedCrossRef Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40(2):271–280PubMedCrossRef
15.
go back to reference Krenn MH, Ambrosetti-Giudici S, Pfenniger A, Burger J, Piotrowski WP (2008) Minimally invasive intraoperative stiffness measurement of lumbar spinal motion segments. Neurosurgery 63(4 Suppl 2):309–313 (discussion 313–4)PubMedCrossRef Krenn MH, Ambrosetti-Giudici S, Pfenniger A, Burger J, Piotrowski WP (2008) Minimally invasive intraoperative stiffness measurement of lumbar spinal motion segments. Neurosurgery 63(4 Suppl 2):309–313 (discussion 313–4)PubMedCrossRef
16.
go back to reference Lafon Y, Lafage V, Steib JP, Dubousset J, Skalli W (2010) In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine (Phila Pa 1976) 35(2):186–193CrossRef Lafon Y, Lafage V, Steib JP, Dubousset J, Skalli W (2010) In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine (Phila Pa 1976) 35(2):186–193CrossRef
17.
go back to reference Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10(4):573–580PubMedCrossRef Oxland TR, Lin RM, Panjabi MM (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10(4):573–580PubMedCrossRef
18.
go back to reference Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 58(5):642–652PubMed Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 58(5):642–652PubMed
19.
go back to reference Panjabi MM, Brand RA, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9(4):185–192PubMedCrossRef Panjabi MM, Brand RA, White AA (1976) Three-dimensional flexibility and stiffness properties of the human thoracic spine. J Biomech 9(4):185–192PubMedCrossRef
20.
go back to reference Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 76(3):413–424PubMed Panjabi MM, Oxland TR, Yamamoto I, Crisco JJ (1994) Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load–displacement curves. J Bone Joint Surg Am 76(3):413–424PubMed
21.
go back to reference Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42(1):55–60PubMedCrossRef Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42(1):55–60PubMedCrossRef
22.
go back to reference Reutlinger C, Gédet P, Büchler P, Kowal J, Rudolph T, Burger J, Scheffler K, Hasler C (2011) Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study. Med Eng Phys 33(3):340–346PubMedCrossRef Reutlinger C, Gédet P, Büchler P, Kowal J, Rudolph T, Burger J, Scheffler K, Hasler C (2011) Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study. Med Eng Phys 33(3):340–346PubMedCrossRef
23.
go back to reference Sran MM, Khan KM, Zhu Q, Oxland TR (2005) Posteroanterior stiffness predicts sagittal plane midthoracic range of motion and three-dimensional flexibility in cadaveric spine segments. Clin Biomech (Bristol, Avon) 20(8):806–812CrossRef Sran MM, Khan KM, Zhu Q, Oxland TR (2005) Posteroanterior stiffness predicts sagittal plane midthoracic range of motion and three-dimensional flexibility in cadaveric spine segments. Clin Biomech (Bristol, Avon) 20(8):806–812CrossRef
24.
go back to reference Tawackoli W, Marco R, Liebschner MAK (2004) The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine (Phila Pa 1976) 29(9):988–993CrossRef Tawackoli W, Marco R, Liebschner MAK (2004) The effect of compressive axial preload on the flexibility of the thoracolumbar spine. Spine (Phila Pa 1976) 29(9):988–993CrossRef
25.
go back to reference Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97PubMedCrossRef Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97PubMedCrossRef
26.
go back to reference Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 14(11):1256–1260CrossRef Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine (Phila Pa 1976) 14(11):1256–1260CrossRef
Metadata
Title
Intraoperative determination of the load–displacement behavior of scoliotic spinal motion segments: preliminary clinical results
Authors
Christoph Reutlinger
Carol Hasler
Klaus Scheffler
Philippe Büchler
Publication date
01-08-2012
Publisher
Springer-Verlag
Published in
European Spine Journal / Issue Special Issue 6/2012
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-012-2164-8

Other articles of this Special Issue 6/2012

European Spine Journal 6/2012 Go to the issue