Skip to main content
Top
Published in: Journal of Anesthesia 6/2018

01-12-2018 | Original Article

Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: role of calcium signaling pathway

Authors: Xiaowei Ding, Xingzhu Ju, Yan Lu, Wei Chen, Jiaqiang Wang, Changhong Miao, Jiawei Chen

Published in: Journal of Anesthesia | Issue 6/2018

Login to get access

Abstract

Purpose

Angiotensin II (Ang II) has been shown to be involved in neurological disorders. Propofol demonstrated neuroprotective effects in neurons.

Methods

Mouse hippocampal HT22 cells were pre-treated with propofol, followed by Ang II treatment. The expression of synaptic proteins (synapsin I and PSD95) was examined. The effects of propofol on Ang II-induced NADPH oxidase expression and superoxide anion generation were examined. The effects of propofol on intracellular calcium concentration, the activation of calcium/calmodulin-dependent protein kinase II (CaMKII), and protein kinase C (PKC) were measured.

Results

Ang II reduced the expression of synapsin I and PSD95, which was attenuated by propofol. Ang II-induced effects were blocked by Ang II type 1 receptor (AT1 receptor) blocker. Ang II induced the expression of NADPH oxidase and caused superoxide anion accumulation, which were attenuated by propofol. In addition, propofol induced intracellular calcium concentration, and activated CaMKII as well as PKCβ. Importantly, the Ang II-mediated effects were diminished by α-tocopherol, and the propofol-mediated effects were alleviated by calcium chelator, CaMKII inhibitor, and PKCβ inhibitor.

Conclusion

Ang II, via AT1 receptor, induced oxidative stress and reduced the expression of synapsin I and PSD95 in HT22 cells. Propofol may increase synapsin I and PSD95 expression by inhibiting oxidative stress and stimulating calcium signaling pathway.
Literature
1.
go back to reference Buckley JP, BickertonI RK, Halliday RP, Kato H. Central effects of peptides on the cardiovascular system. Ann N Y AcadSci. 1963;104:299–311.CrossRef Buckley JP, BickertonI RK, Halliday RP, Kato H. Central effects of peptides on the cardiovascular system. Ann N Y AcadSci. 1963;104:299–311.CrossRef
2.
go back to reference Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein PeptSci. 2004;5:267–73.CrossRef Leung PS. The peptide hormone angiotensin II: its new functions in tissues and organs. Curr Protein PeptSci. 2004;5:267–73.CrossRef
3.
go back to reference Deliu E, Brailoiu GC, Eguchi S, Hoffman NE, Rabinowitz JE, Tilley DG, Madesh M, Koch WJ, Brailoiu E. Direct evidence of intracrine angiotensin II signaling in neurons. Am J Physiol Cell Physiol. 2014;306:736–44.CrossRef Deliu E, Brailoiu GC, Eguchi S, Hoffman NE, Rabinowitz JE, Tilley DG, Madesh M, Koch WJ, Brailoiu E. Direct evidence of intracrine angiotensin II signaling in neurons. Am J Physiol Cell Physiol. 2014;306:736–44.CrossRef
4.
go back to reference Wang BR, Shi JQ, Zhang YD, Zhu DL, Shi JP. Angiotensin II does not directly affect Aβ secretion or β-/γ-secretase activity via activation of angiotensin II type 1 receptor. Neurosci Lett. 2011;500:103–7.CrossRef Wang BR, Shi JQ, Zhang YD, Zhu DL, Shi JP. Angiotensin II does not directly affect Aβ secretion or β-/γ-secretase activity via activation of angiotensin II type 1 receptor. Neurosci Lett. 2011;500:103–7.CrossRef
5.
go back to reference Wu CY, Zha H, Xia QQ, Yuan Y, Liang XY, Li JH, Guo ZY, Li JJ. Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell Biochem. 2013;382:47–58.CrossRef Wu CY, Zha H, Xia QQ, Yuan Y, Liang XY, Li JH, Guo ZY, Li JJ. Expression of angiotensin II and its receptors in activated microglia in experimentally induced cerebral ischemia in the adult rats. Mol Cell Biochem. 2013;382:47–58.CrossRef
6.
go back to reference Inaba S, Iwai M, Furuno M, Tomono Y, Kanno H, Senba I, Okayama H, Mogi M, Higaki J, Horiuchi M. Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension. 2009;53:356–62.CrossRef Inaba S, Iwai M, Furuno M, Tomono Y, Kanno H, Senba I, Okayama H, Mogi M, Higaki J, Horiuchi M. Continuous activation of renin-angiotensin system impairs cognitive function in renin/angiotensinogen transgenic mice. Hypertension. 2009;53:356–62.CrossRef
7.
go back to reference Chen J, Chen W, Zhu M, Zhu Y, Xu P, Miao C. Angiotensin II-induced mouse hippocampal neuronal HT22 cell apoptosis was inhibited by propofol: role of neuronal nitric oxide synthase and metallothinonein-3. Neuroscience. 2015;305:117–27.CrossRef Chen J, Chen W, Zhu M, Zhu Y, Xu P, Miao C. Angiotensin II-induced mouse hippocampal neuronal HT22 cell apoptosis was inhibited by propofol: role of neuronal nitric oxide synthase and metallothinonein-3. Neuroscience. 2015;305:117–27.CrossRef
8.
go back to reference Pan HL. Brain angiotensin II and synaptic transmission. Neuroscientist. 2004;10:422–31.CrossRef Pan HL. Brain angiotensin II and synaptic transmission. Neuroscientist. 2004;10:422–31.CrossRef
9.
go back to reference Wang J, Jin L, Zhu Y, Zhou X, Yu R, Gao S. Research progress in NOS1AP in neurological and psychiatric diseases. Brain Res Bull. 2016;125:99–105.CrossRef Wang J, Jin L, Zhu Y, Zhou X, Yu R, Gao S. Research progress in NOS1AP in neurological and psychiatric diseases. Brain Res Bull. 2016;125:99–105.CrossRef
10.
go back to reference Proctor DT, Coulson EJ, Dodd PR. Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the alzheimer inferior temporal cortex is correlated with disease pathology. J Alzheimers Dis. 2010;21:795–811.CrossRef Proctor DT, Coulson EJ, Dodd PR. Reduction in post-synaptic scaffolding PSD-95 and SAP-102 protein levels in the alzheimer inferior temporal cortex is correlated with disease pathology. J Alzheimers Dis. 2010;21:795–811.CrossRef
11.
go back to reference Chen J, Chen W, Zhu M, Zhu Y, Yin H, Tan Z. Propofol attenuates angiotensin II-induced apoptosis in human coronary artery endothelial cells. Br J Anaesth. 2011;107:525–32.CrossRef Chen J, Chen W, Zhu M, Zhu Y, Yin H, Tan Z. Propofol attenuates angiotensin II-induced apoptosis in human coronary artery endothelial cells. Br J Anaesth. 2011;107:525–32.CrossRef
12.
go back to reference Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience. 2013;246:117–32.CrossRef Cui DR, Wang L, Jiang W, Qi AH, Zhou QH, Zhang XL. Propofol prevents cerebral ischemia-triggered autophagy activation and cell death in the rat hippocampus through the NF-κB/p53 signaling pathway. Neuroscience. 2013;246:117–32.CrossRef
13.
go back to reference He J, Huang C, Jiang J, Lv L. Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurol Sci. 2013;34:165–71.CrossRef He J, Huang C, Jiang J, Lv L. Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurol Sci. 2013;34:165–71.CrossRef
14.
go back to reference Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK. Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res. 2014;39:793–9.CrossRef Shi SS, Yang WZ, Chen Y, Chen JP, Tu XK. Propofol reduces inflammatory reaction and ischemic brain damage in cerebral ischemia in rats. Neurochem Res. 2014;39:793–9.CrossRef
15.
go back to reference Korkotian E, Oni-Biton E, Segal M. The role of the store-operated calcium entry channel orai1 in cultured rat hippocampal synapse formation and plasticity. J Physiol. 2017;595:125–40.CrossRef Korkotian E, Oni-Biton E, Segal M. The role of the store-operated calcium entry channel orai1 in cultured rat hippocampal synapse formation and plasticity. J Physiol. 2017;595:125–40.CrossRef
16.
go back to reference Lee HY, Weon JB, Ryu G, Yang WS, Kim NY, Kim MK, Ma CJ. Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells. BMC Complement Altern Med. 2017;17:207.CrossRef Lee HY, Weon JB, Ryu G, Yang WS, Kim NY, Kim MK, Ma CJ. Neuroprotective effect of Aronia melanocarpa extract against glutamate-induced oxidative stress in HT22 cells. BMC Complement Altern Med. 2017;17:207.CrossRef
17.
go back to reference Von B und Halbach, Albrecht O. D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326:599–616.CrossRef Von B und Halbach, Albrecht O. D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326:599–616.CrossRef
18.
go back to reference Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci. 2016;27:301–15.PubMed Bali A, Jaggi AS. Angiotensin II-triggered kinase signaling cascade in the central nervous system. Rev Neurosci. 2016;27:301–15.PubMed
19.
go back to reference Wright JW, Harding JW. The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch. 2013;465:133–51.CrossRef Wright JW, Harding JW. The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch. 2013;465:133–51.CrossRef
20.
go back to reference Mogi M, Iwanami J, Horiuchi M. Roles of brain angiotensin II in cognitive function and dementia. Int J Hypertens.2012;169649. Mogi M, Iwanami J, Horiuchi M. Roles of brain angiotensin II in cognitive function and dementia. Int J Hypertens.2012;169649.
21.
go back to reference Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, Chamontin B, Dartigues JF, Vellas B, Andrieu S. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015;29:113–30.CrossRef Rouch L, Cestac P, Hanon O, Cool C, Helmer C, Bouhanick B, Chamontin B, Dartigues JF, Vellas B, Andrieu S. Antihypertensive drugs, prevention of cognitive decline and dementia: a systematic review of observational studies, randomized controlled trials and meta-analyses, with discussion of potential mechanisms. CNS Drugs. 2015;29:113–30.CrossRef
22.
go back to reference Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in alzheimer’s disease in association with amyloid-β and tau pathology. J Alzheimers Dis. 2017;58:203–14.CrossRef Kehoe PG, Hibbs E, Palmer LE, Miners JS. Angiotensin-III is Increased in alzheimer’s disease in association with amyloid-β and tau pathology. J Alzheimers Dis. 2017;58:203–14.CrossRef
23.
go back to reference Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1–7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience. 2014;273:39–51.CrossRef Zheng J, Li G, Chen S, Bihl J, Buck J, Zhu Y, Xia H, Lazartigues E, Chen Y, Olson JE. Activation of the ACE2/Ang-(1–7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction. Neuroscience. 2014;273:39–51.CrossRef
24.
25.
go back to reference Zimmerman MC. Angiotensin II and angiotensin-1–7 redox signaling in the central nervous system. Curr Opin Pharmacol. 2011;11:138–43.CrossRef Zimmerman MC. Angiotensin II and angiotensin-1–7 redox signaling in the central nervous system. Curr Opin Pharmacol. 2011;11:138–43.CrossRef
26.
go back to reference Zhao HR, Jiang T, Tian YY, Gao Q, Li Z, Pan Y, Wu L, Lu J, Zhang YD. Angiotensin II triggers apoptosis via enhancement of NADPH oxidase-dependent oxidative stressin a dopaminergic neuronal cell line. Neurochem Res. 2015;40:854–63.CrossRef Zhao HR, Jiang T, Tian YY, Gao Q, Li Z, Pan Y, Wu L, Lu J, Zhang YD. Angiotensin II triggers apoptosis via enhancement of NADPH oxidase-dependent oxidative stressin a dopaminergic neuronal cell line. Neurochem Res. 2015;40:854–63.CrossRef
27.
go back to reference Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest. 2000;106:103–6.CrossRef Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. Divergent functions of angiotensin II receptor isoforms in the brain. J Clin Invest. 2000;106:103–6.CrossRef
28.
go back to reference Bild W, Hritcu L, Stefanescu C, Ciobica A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog Neuropsycho Pharmacol Biol Psychiatry. 2013;43:79–88.CrossRef Bild W, Hritcu L, Stefanescu C, Ciobica A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog Neuropsycho Pharmacol Biol Psychiatry. 2013;43:79–88.CrossRef
29.
go back to reference Gaur V, Kumar A. Neuroprotective potentials of candesartan, atorvastatin and their combination against stroke induced motor dysfunction. Inflammopharmacology 19:205–214.CrossRef Gaur V, Kumar A. Neuroprotective potentials of candesartan, atorvastatin and their combination against stroke induced motor dysfunction. Inflammopharmacology 19:205–214.CrossRef
30.
go back to reference Zhang TL, Fu JL, Geng Z, Yang JJ, Sun XJ. The neuroprotectiveeffect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther. 2012;18:981–7.CrossRef Zhang TL, Fu JL, Geng Z, Yang JJ, Sun XJ. The neuroprotectiveeffect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci Ther. 2012;18:981–7.CrossRef
31.
go back to reference Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology. 2016;233:795–807.CrossRef Marchese NA, Artur de laVillarmois E, Basmadjian OM, Perez MF, Baiardi G, Bregonzio C. Brain angiotensin II AT1 receptors are involved in the acute and long-term amphetamine-induced neurocognitive alterations. Psychopharmacology. 2016;233:795–807.CrossRef
32.
go back to reference Li Z, Cao Y, Li L, Liang Y, Tian X, Mo N, Liu Y, Li M, Chui D, Guo X. Prophylactic angiotensin type 1 receptor antagonism confers neuroprotection in an aged rat model of postoperative cognitive dysfunction. Biochem Biophys Res Commun. 2014;449:74–80.CrossRef Li Z, Cao Y, Li L, Liang Y, Tian X, Mo N, Liu Y, Li M, Chui D, Guo X. Prophylactic angiotensin type 1 receptor antagonism confers neuroprotection in an aged rat model of postoperative cognitive dysfunction. Biochem Biophys Res Commun. 2014;449:74–80.CrossRef
33.
go back to reference Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M, Seidel K, Dirnagl U, Unger T. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J. 2005;19:617–9.CrossRef Li J, Culman J, Hörtnagl H, Zhao Y, Gerova N, Timm M, Blume A, Zimmermann M, Seidel K, Dirnagl U, Unger T. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J. 2005;19:617–9.CrossRef
34.
go back to reference Shenoy UV, Richards EM, Huang XC, Sumners C. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology. 1999;140:500–9.CrossRef Shenoy UV, Richards EM, Huang XC, Sumners C. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology. 1999;140:500–9.CrossRef
35.
go back to reference Von B und Halbach, Walther O, Bader T, Albrecht M. D. Genetic deletion of angiotensin AT2 receptor leads to increased cell numbers in different brain structures of mice. Regul Pept. 2001;99:209–16.CrossRef Von B und Halbach, Walther O, Bader T, Albrecht M. D. Genetic deletion of angiotensin AT2 receptor leads to increased cell numbers in different brain structures of mice. Regul Pept. 2001;99:209–16.CrossRef
36.
go back to reference Xu Z, Lu Y, Wang J, Ding X, Chen J, Miao C. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca2+ homeostasis in mouse hippocampal HT22 cells. Biomed P. 2017;91:664–672CrossRef Xu Z, Lu Y, Wang J, Ding X, Chen J, Miao C. The protective effect of propofol against TNF-α-induced apoptosis was mediated via inhibiting iNOS/NO production and maintaining intracellular Ca2+ homeostasis in mouse hippocampal HT22 cells. Biomed P. 2017;91:664–672CrossRef
37.
go back to reference Shao H, Zhang Y, Dong Y, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and alzheimer’s disease transgenic mice. J Alzheimers Dis. 2014;41:499–513.CrossRef Shao H, Zhang Y, Dong Y, Yu B, Xia W, Xie Z. Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and alzheimer’s disease transgenic mice. J Alzheimers Dis. 2014;41:499–513.CrossRef
38.
go back to reference Sagara Y, Hendler S, Khoh-Reiter S, Gillenwater G, Carlo D, Schubert D, Chang J. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem. 1999;73:2524–30.CrossRef Sagara Y, Hendler S, Khoh-Reiter S, Gillenwater G, Carlo D, Schubert D, Chang J. Propofol hemisuccinate protects neuronal cells from oxidative injury. J Neurochem. 1999;73:2524–30.CrossRef
39.
go back to reference Delgado-Marín L, Sánchez-Borzone M, García DA. Neuroprotective effects of gabaergic phenols correlated with their pharmacological and antioxidant properties. Life Sci. 2017;175:11–5.CrossRef Delgado-Marín L, Sánchez-Borzone M, García DA. Neuroprotective effects of gabaergic phenols correlated with their pharmacological and antioxidant properties. Life Sci. 2017;175:11–5.CrossRef
40.
go back to reference Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1 methyl 4 phenylpyridinium. Mol Med Rep. 2015;13:309–14.CrossRef Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1 methyl 4 phenylpyridinium. Mol Med Rep. 2015;13:309–14.CrossRef
41.
go back to reference Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C. Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromolecular Med. 2014;16:772–81.CrossRef Zhu M, Chen J, Wen M, Sun Z, Sun X, Wang J, Miao C. Propofol protects against angiotensin II-induced mouse hippocampal HT22 cells apoptosis via inhibition of p66Shc mitochondrial translocation. Neuromolecular Med. 2014;16:772–81.CrossRef
42.
go back to reference Luo T, Wu J, Kabadi SV, Sabirzhanov B, Guanciale K, Hanscom M, Faden J, Cardiff K, Bengson CJ, Faden AI. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology. 2013;119:1370–88.CrossRef Luo T, Wu J, Kabadi SV, Sabirzhanov B, Guanciale K, Hanscom M, Faden J, Cardiff K, Bengson CJ, Faden AI. Propofol limits microglial activation after experimental brain trauma through inhibition of nicotinamide adenine dinucleotide phosphate oxidase. Anesthesiology. 2013;119:1370–88.CrossRef
43.
go back to reference Wu XJ, Zheng YJ, Cui YY, Zhu L, Lu Y, Chen HZ. Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin. 2007;28:1123–8.CrossRef Wu XJ, Zheng YJ, Cui YY, Zhu L, Lu Y, Chen HZ. Propofol attenuates oxidative stress-induced PC12 cell injury via p38 MAP kinase dependent pathway. Acta Pharmacol Sin. 2007;28:1123–8.CrossRef
44.
go back to reference Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012;7:e35324.CrossRef Cui D, Wang L, Qi A, Zhou Q, Zhang X, Jiang W. Propofol prevents autophagic cell death following oxygen and glucose deprivation in PC12 cells and cerebral ischemia-reperfusion injury in rats. PLoS One. 2012;7:e35324.CrossRef
45.
46.
go back to reference Chin LS, Li L, Ferreira A, Kosik KS, Greengard P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci USA. 1995;92:9230–4.CrossRef Chin LS, Li L, Ferreira A, Kosik KS, Greengard P. Impairment of axonal development and of synaptogenesis in hippocampal neurons of synapsin I-deficient mice. Proc Natl Acad Sci USA. 1995;92:9230–4.CrossRef
47.
go back to reference Buendia I, Tenti G, Michalska P, Méndez-López I, Luengo E, Satriani M, Padín-Nogueira F, López MG, Ramos MT, García AG, Menéndez JC, León R. ITH14001, a CGP37157-nimodipine hybrid designed to regulate calcium homeostasis and oxidative stress, exerts neuroprotection in cerebral ischemia. ACS Chem Neurosci. 2017;8:67–81.CrossRef Buendia I, Tenti G, Michalska P, Méndez-López I, Luengo E, Satriani M, Padín-Nogueira F, López MG, Ramos MT, García AG, Menéndez JC, León R. ITH14001, a CGP37157-nimodipine hybrid designed to regulate calcium homeostasis and oxidative stress, exerts neuroprotection in cerebral ischemia. ACS Chem Neurosci. 2017;8:67–81.CrossRef
48.
go back to reference Lu Y, Gu Y, Ding X, Wang J, Chen J, Miao C. Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS One. 2017;12:e0178098.CrossRef Lu Y, Gu Y, Ding X, Wang J, Chen J, Miao C. Intracellular Ca2+ homeostasis and JAK1/STAT3 pathway are involved in the protective effect of propofol on BV2 microglia against hypoxia-induced inflammation and apoptosis. PLoS One. 2017;12:e0178098.CrossRef
49.
go back to reference Li X, Li W, Luo J, Wei K, Li P, Liu XB, Min S. Effects of propofol on the activation of hippocampal CaMKIIα in depressed rats receiving electroconvulsive therapy. J ECT. 2012;28:242–7.CrossRef Li X, Li W, Luo J, Wei K, Li P, Liu XB, Min S. Effects of propofol on the activation of hippocampal CaMKIIα in depressed rats receiving electroconvulsive therapy. J ECT. 2012;28:242–7.CrossRef
50.
go back to reference Björnström K, Sjölander A, Schippert A, Eintrei C. A tyrosine kinase regulates propofol-induced modulation of the beta-subunit of the GABA(A) receptor and release of intracellular calcium in cortical rat neurones. Acta Physiol Scand. 2002;175:227–35.CrossRef Björnström K, Sjölander A, Schippert A, Eintrei C. A tyrosine kinase regulates propofol-induced modulation of the beta-subunit of the GABA(A) receptor and release of intracellular calcium in cortical rat neurones. Acta Physiol Scand. 2002;175:227–35.CrossRef
51.
go back to reference Liang WZ, Jan CR, Lu CH. Investigation of 2,6-diisopropylphenol (propofol)-evoked Ca2+ movement and cell death in human glioblastoma cells. Toxicol In Vitro. 2012;26:862–71.CrossRef Liang WZ, Jan CR, Lu CH. Investigation of 2,6-diisopropylphenol (propofol)-evoked Ca2+ movement and cell death in human glioblastoma cells. Toxicol In Vitro. 2012;26:862–71.CrossRef
52.
go back to reference Wickley PJ, Yuge R, Russell MS, Zhang H, Sulak MA, Damron DS. Propofol modulates agonist-induced transient receptor potential vanilloid subtype-1 receptor desensitization via a protein kinase Cepsilon-dependent pathway in mouse dorsal root ganglion sensory neurons. Anesthesiology. 2010;113:833–44.CrossRef Wickley PJ, Yuge R, Russell MS, Zhang H, Sulak MA, Damron DS. Propofol modulates agonist-induced transient receptor potential vanilloid subtype-1 receptor desensitization via a protein kinase Cepsilon-dependent pathway in mouse dorsal root ganglion sensory neurons. Anesthesiology. 2010;113:833–44.CrossRef
53.
go back to reference Lu CW, Lin TY, Chiang HS, Wang SJ. Facilitation of glutamate release from rat cerebral cortex nerve terminal by subanesthetic concentration propofol. Synapse. 2009;63:773–81.CrossRef Lu CW, Lin TY, Chiang HS, Wang SJ. Facilitation of glutamate release from rat cerebral cortex nerve terminal by subanesthetic concentration propofol. Synapse. 2009;63:773–81.CrossRef
Metadata
Title
Angiotensin II-mediated suppression of synaptic proteins in mouse hippocampal neuronal HT22 cell was inhibited by propofol: role of calcium signaling pathway
Authors
Xiaowei Ding
Xingzhu Ju
Yan Lu
Wei Chen
Jiaqiang Wang
Changhong Miao
Jiawei Chen
Publication date
01-12-2018
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 6/2018
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-018-2565-x

Other articles of this Issue 6/2018

Journal of Anesthesia 6/2018 Go to the issue