Skip to main content
Top
Published in: Journal of Anesthesia 4/2016

01-08-2016 | Original Article

Pancuronium enhances isoflurane anesthesia in rats via inhibition of cerebral nicotinic acetylcholine receptors

Authors: Yusuke Miyazaki, Hiroshi Sunaga, Shotaro Hobo, Kazuko Miyano, Shoichi Uezono

Published in: Journal of Anesthesia | Issue 4/2016

Login to get access

Abstract

Purpose

This study was conducted to elucidate the mechanism of enhancement of volatile anesthetics by neuromuscular blocking agents in rats and to consider the relevance of this enhancement to clinical anesthesia.

Methods

Male Sprague–Dawley rats were used. After confirming a movement in response to tail clamping under 1.1 % isoflurane anesthesia, response was determined when the tail clamp was applied at several points after microinjection of pancuronium into the lateral ventricle. Arousal responses to microinjection of nicotine into the lateral ventricle were assessed with or without pretreatment with intraventricular pancuronium. The intravenous 50 % effective dose (ED50) and 95 % effective dose (ED95) for neuromuscular blockade with pancuronium administered in a cumulative fashion at 1.1 % isoflurane were calculated.

Results

Intraventricular pancuronium dose-dependently reduced the response to tail clamping, and the dose required to show immobilization of 50 % of rats (intraventricular ED50) was 1.62 µg/kg. Pretreatment with pancuronium at 6 µg/kg significantly reduced the effect of awakening by nicotine under isoflurane anesthesia (P = 0.044). The intravenous ED50 and ED95 for neuromuscular blockade were 63 µg/kg (90 % confidence interval [CI] 52–75 µg/kg) and 133 µg/kg (90 % CI 109–158 µg/kg), respectively. The ratio of intraventricular ED50 to intravenous ED50 was 0.026.

Conclusion

Pancuronium microinjection into the lateral ventricle dose-dependently enhances the depth of isoflurane anesthesia, which might be caused by inhibition of neuronal nicotinic acetylcholine receptor transmission in the cerebrum. Intravenous injection of pancuronium at high doses might increase the cerebrospinal concentration to a level at which an effect can be observed.
Literature
1.
go back to reference Whittington RA, Virág L. The differential effects of equipotent doses of isoflurane and desflurane on hippocampal acetylcholine levels in young and aged rats. Neurosci Lett. 2010;471:166–70.CrossRefPubMed Whittington RA, Virág L. The differential effects of equipotent doses of isoflurane and desflurane on hippocampal acetylcholine levels in young and aged rats. Neurosci Lett. 2010;471:166–70.CrossRefPubMed
2.
go back to reference Westphalen RI, Desai KM, Hemmings HC Jr. Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane. Br J Anaesth. 2013;110:592–9.CrossRefPubMed Westphalen RI, Desai KM, Hemmings HC Jr. Presynaptic inhibition of the release of multiple major central nervous system neurotransmitter types by the inhaled anaesthetic isoflurane. Br J Anaesth. 2013;110:592–9.CrossRefPubMed
3.
go back to reference Zucker J. Central cholinergic depression reduces MAC for isoflurane in rats. Anesth Anal. 1991;72:790–5.CrossRef Zucker J. Central cholinergic depression reduces MAC for isoflurane in rats. Anesth Anal. 1991;72:790–5.CrossRef
4.
go back to reference Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;107:264–72.CrossRefPubMed Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology. 2007;107:264–72.CrossRefPubMed
5.
go back to reference Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103:108–14.CrossRefPubMed Fagerlund MJ, Eriksson LI. Current concepts in neuromuscular transmission. Br J Anaesth. 2009;103:108–14.CrossRefPubMed
6.
go back to reference Tassonyi E, Fathi M, Hughes GJ, Chiodini F, Bertrand D, Muller D, Fuchs-Buder T. Cerebrospinal fluid concentrations of atracurium, laudanosine and vecuronium following clinical subarachnoid hemorrhage. Acta Anaesthesiol Scand. 2002;46:1236–41.CrossRefPubMed Tassonyi E, Fathi M, Hughes GJ, Chiodini F, Bertrand D, Muller D, Fuchs-Buder T. Cerebrospinal fluid concentrations of atracurium, laudanosine and vecuronium following clinical subarachnoid hemorrhage. Acta Anaesthesiol Scand. 2002;46:1236–41.CrossRefPubMed
7.
go back to reference Fuchs-Buder T, Strowitzki M, Rentsch K, Schreiber JU, Philipp-Osterman S, Kleinschmidt S. Concentration of rocuronium in cerebrospinal fluid of patients undergoing cerebral aneurysm clipping. Br J Anaesth. 2004;92:419–21.CrossRefPubMed Fuchs-Buder T, Strowitzki M, Rentsch K, Schreiber JU, Philipp-Osterman S, Kleinschmidt S. Concentration of rocuronium in cerebrospinal fluid of patients undergoing cerebral aneurysm clipping. Br J Anaesth. 2004;92:419–21.CrossRefPubMed
8.
go back to reference Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Burlington: Academic Press; 2006. Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Burlington: Academic Press; 2006.
9.
go back to reference White PF, Johnston RR, Eger EI 2nd. Determination of anesthetic requirement in rats. Anesthesiology. 1974;40:52–7.CrossRefPubMed White PF, Johnston RR, Eger EI 2nd. Determination of anesthetic requirement in rats. Anesthesiology. 1974;40:52–7.CrossRefPubMed
10.
go back to reference Quasha AL, Eger EI 2nd, Tinker JH. Determination and applications of MAC. Anesthesiology. 1980;53:315–34.CrossRefPubMed Quasha AL, Eger EI 2nd, Tinker JH. Determination and applications of MAC. Anesthesiology. 1980;53:315–34.CrossRefPubMed
11.
go back to reference Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–8.CrossRefPubMed
12.
go back to reference Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology. 1997;86:859–65.CrossRefPubMed Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology. 1997;86:859–65.CrossRefPubMed
13.
go back to reference Violet JM, Downie DL, Nakisa RC, Lieb WR, Franks NP. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology. 1997;86:866–74.CrossRefPubMed Violet JM, Downie DL, Nakisa RC, Lieb WR, Franks NP. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology. 1997;86:866–74.CrossRefPubMed
14.
go back to reference Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dolle F, Syrota A, Valette H. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET. J Nucl Med. 2005;46:240–7.PubMed Gallezot JD, Bottlaender M, Gregoire MC, Roumenov D, Deverre JR, Coulon C, Ottaviani M, Dolle F, Syrota A, Valette H. In vivo imaging of human cerebral nicotinic acetylcholine receptors with 2-18F-fluoro-A-85380 and PET. J Nucl Med. 2005;46:240–7.PubMed
15.
go back to reference Chiodini F, Charpantier E, Muller D, Tassonyi E, Fuchs-Buder T, Bertrand D. Blockade and activation of the human neuronal nicotinic acetylcholine receptors by atracurium and laudanosine. Anesthesiology. 2001;94:643–51.CrossRefPubMed Chiodini F, Charpantier E, Muller D, Tassonyi E, Fuchs-Buder T, Bertrand D. Blockade and activation of the human neuronal nicotinic acetylcholine receptors by atracurium and laudanosine. Anesthesiology. 2001;94:643–51.CrossRefPubMed
16.
go back to reference Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105:521–33.CrossRefPubMed Jonsson M, Gurley D, Dabrowski M, Larsson O, Johnson EC, Eriksson LI. Distinct pharmacologic properties of neuromuscular blocking agents on human neuronal nicotinic acetylcholine receptors: a possible explanation for the train-of-four fade. Anesthesiology. 2006;105:521–33.CrossRefPubMed
17.
go back to reference Drummond JC. MAC for halothane, enflurane, and isoflurane in the New Zealand white rabbit: and a test for the validity of MAC determinations. Anesthesiology. 1985;62:336–8.CrossRefPubMed Drummond JC. MAC for halothane, enflurane, and isoflurane in the New Zealand white rabbit: and a test for the validity of MAC determinations. Anesthesiology. 1985;62:336–8.CrossRefPubMed
18.
go back to reference Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707–12.CrossRefPubMed Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology. 1993;78:707–12.CrossRefPubMed
19.
go back to reference Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244–9.CrossRefPubMed Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology. 1993;79:1244–9.CrossRefPubMed
20.
go back to reference Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology. 1994;81:1511–5.CrossRefPubMed Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology. 1994;81:1511–5.CrossRefPubMed
21.
go back to reference Stabernack C, Zhang Y, Sonner JM, Laster M, Eger EI 2nd. Thiopental produces immobility primarily by supraspinal actions in rats. Anesth Anal. 2005;100:128–36.CrossRef Stabernack C, Zhang Y, Sonner JM, Laster M, Eger EI 2nd. Thiopental produces immobility primarily by supraspinal actions in rats. Anesth Anal. 2005;100:128–36.CrossRef
22.
go back to reference Harris RS, Lazar O, Johansen JW, Sebel PS. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006;104:1170–5.CrossRefPubMed Harris RS, Lazar O, Johansen JW, Sebel PS. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006;104:1170–5.CrossRefPubMed
23.
go back to reference Luo LL, Zhou LX, Wang J, Wang RR, Huang W, Zhou J. Effects of propofol on the minimum alveolar concentration of sevoflurane for immobility at skin incision in adult patients. J Clin Anesth. 2010;22:527–32.CrossRefPubMed Luo LL, Zhou LX, Wang J, Wang RR, Huang W, Zhou J. Effects of propofol on the minimum alveolar concentration of sevoflurane for immobility at skin incision in adult patients. J Clin Anesth. 2010;22:527–32.CrossRefPubMed
24.
go back to reference Werba A, Gilly H, Weindlmayr-Goettel M, Spiss CK, Steinbereithner K, Czech T, Agoston S. Porcine model for studying the passage of non-depolarizing neuromuscular blockers through the blood-brain barrier. Br J Anaesth. 1992;69:382–6.CrossRefPubMed Werba A, Gilly H, Weindlmayr-Goettel M, Spiss CK, Steinbereithner K, Czech T, Agoston S. Porcine model for studying the passage of non-depolarizing neuromuscular blockers through the blood-brain barrier. Br J Anaesth. 1992;69:382–6.CrossRefPubMed
Metadata
Title
Pancuronium enhances isoflurane anesthesia in rats via inhibition of cerebral nicotinic acetylcholine receptors
Authors
Yusuke Miyazaki
Hiroshi Sunaga
Shotaro Hobo
Kazuko Miyano
Shoichi Uezono
Publication date
01-08-2016
Publisher
Springer Japan
Published in
Journal of Anesthesia / Issue 4/2016
Print ISSN: 0913-8668
Electronic ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-016-2178-1

Other articles of this Issue 4/2016

Journal of Anesthesia 4/2016 Go to the issue