Skip to main content
Top
Published in: Pediatric Nephrology 5/2019

01-05-2019 | Kidney Transplantation | Original Article

Short stature in advanced pediatric CKD is associated with faster time to reduced kidney function after transplant

Authors: Yijun Li, Larry A. Greenbaum, Bradley A. Warady, Susan L. Furth, Derek K. Ng

Published in: Pediatric Nephrology | Issue 5/2019

Login to get access

Abstract

Background

Among children who receive a kidney transplant, short stature is associated with a more complicated post-transplant course and increased mortality. Short stature prior to transplant may reflect the accumulated risk of multiple factors during chronic kidney disease (CKD); however, its relationship with post-transplant kidney function has not been well characterized.

Methods

In the Chronic Kidney Disease in Children (CKiD) cohort restricted to children who received a kidney transplant, short stature (i.e., growth failure) was defined as age-sex-specific height < 3rd percentile. The outcome was time to estimated glomerular filtration rate (eGFR) < 45 ml/min/1.73 m2 after transplant. Parametric survival models, including adjustment for disease severity, socioeconomic status (SES), and parental height by inverse probability weighting, described the relative times to eGFR< 45 ml/min/1.73 m2.

Results

Of 138 children (median CKD duration at transplant: 13 years), 20% (28) had short stature before the transplant. The median time to eGFR < 45 ml/min/1.73 m2 after kidney transplantation was 6.6 years and those with short stature had a significantly faster time to the poor outcome (log-rank p value 0.004). Children with short stature tended to have lower SES, nephrotic proteinuria, higher blood pressure, and lower mid-parental height before transplant. After adjusting for these variables, children with growth failure had 40% shorter time to eGFR < 45 ml/min/1.73 m2 than those with normal stature (relative time 0.60, 95%CI 0.32, 1.03).

Conclusions

Short stature was associated with a faster time to low kidney function after transplant. SES, disease severity, and parental height partially explained the association. Clinicians should be aware of the implications of growth failure on the outcome of this unique population, while continued attempts are made to define modifiable factors that contribute to this association.
Literature
1.
go back to reference Wong H, Mylrea K, Feber J, Drukker A, Filler G (2006) Prevalence of complications in children with chronic kidney disease according to KDOQI. Kidney Int 70(3):585–590CrossRefPubMed Wong H, Mylrea K, Feber J, Drukker A, Filler G (2006) Prevalence of complications in children with chronic kidney disease according to KDOQI. Kidney Int 70(3):585–590CrossRefPubMed
2.
go back to reference Fine R, Martz K, Stablein D (2010) What have 20 years of data from the North American pediatric renal transplant cooperative study taught us about growth following renal transplantation in infants, children, and adolescents with end-stage renal disease? Pediatr Nephrol 25(4):739–746CrossRefPubMed Fine R, Martz K, Stablein D (2010) What have 20 years of data from the North American pediatric renal transplant cooperative study taught us about growth following renal transplantation in infants, children, and adolescents with end-stage renal disease? Pediatr Nephrol 25(4):739–746CrossRefPubMed
3.
go back to reference Wong CS, Gipson DS, Gillen DL, Emerson S, Koepsell T, Sherrard DJ, Watkins SL, Stehman-Breen C (2000) Anthropometric measures and risk of death in children with end-stage renal disease. Am J Kidney Dis 36(4):811–819CrossRefPubMed Wong CS, Gipson DS, Gillen DL, Emerson S, Koepsell T, Sherrard DJ, Watkins SL, Stehman-Breen C (2000) Anthropometric measures and risk of death in children with end-stage renal disease. Am J Kidney Dis 36(4):811–819CrossRefPubMed
4.
go back to reference Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR (2002) Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol 17(6):450–455CrossRefPubMed Furth SL, Hwang W, Yang C, Neu AM, Fivush BA, Powe NR (2002) Growth failure, risk of hospitalization and death for children with end-stage renal disease. Pediatr Nephrol 17(6):450–455CrossRefPubMed
5.
go back to reference Ku E, Fine RN, Hsu CY, McCulloch C, Glidden DV, Grimes B, Johansen KL (2016) Height at first RRT and mortality in children. Clin J Am Soc Nephrol 11(5):832–839CrossRefPubMedPubMedCentral Ku E, Fine RN, Hsu CY, McCulloch C, Glidden DV, Grimes B, Johansen KL (2016) Height at first RRT and mortality in children. Clin J Am Soc Nephrol 11(5):832–839CrossRefPubMedPubMedCentral
6.
go back to reference Zemel BS, Riley EM, Stallings VA (1997) Evaluation of methodology for nutritional assessment in children: anthropometry, body composition, and energy expenditure. Annu Rev Nutr 17(1):211–235CrossRefPubMed Zemel BS, Riley EM, Stallings VA (1997) Evaluation of methodology for nutritional assessment in children: anthropometry, body composition, and energy expenditure. Annu Rev Nutr 17(1):211–235CrossRefPubMed
7.
go back to reference Prista A, Maia JAR, Damasceno A, Beunen G (2003) Anthropometric indicators of nutritional status: implications for fitness, activity, and health in school-age children and adolescents from Maputo, Mozambique. Am J Clin Nutr 77(4):952–959CrossRefPubMed Prista A, Maia JAR, Damasceno A, Beunen G (2003) Anthropometric indicators of nutritional status: implications for fitness, activity, and health in school-age children and adolescents from Maputo, Mozambique. Am J Clin Nutr 77(4):952–959CrossRefPubMed
8.
go back to reference Greenbaum LA, Warady BA, Furth SL (2009) Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol 29(4):425–434CrossRefPubMedPubMedCentral Greenbaum LA, Warady BA, Furth SL (2009) Current advances in chronic kidney disease in children: growth, cardiovascular, and neurocognitive risk factors. Semin Nephrol 29(4):425–434CrossRefPubMedPubMedCentral
9.
go back to reference Abubakar A (2012) Socioeconomic status, anthropometric status and developmental outcomes of East-African children. In: Handbook of anthropometry. 2012th ed. Springer, New York, pp 2679–2693 Abubakar A (2012) Socioeconomic status, anthropometric status and developmental outcomes of East-African children. In: Handbook of anthropometry. 2012th ed. Springer, New York, pp 2679–2693
10.
go back to reference Gurzkowska B, Kułaga Z, Litwin M, Gurzkowska B, Kułaga Z, Litwin M (2014) The relationship between selected socioeconomic factors and basic anthropometric parameters of school-aged children and adolescents in Poland. Eur J Pediatr 173(1):45–52CrossRefPubMed Gurzkowska B, Kułaga Z, Litwin M, Gurzkowska B, Kułaga Z, Litwin M (2014) The relationship between selected socioeconomic factors and basic anthropometric parameters of school-aged children and adolescents in Poland. Eur J Pediatr 173(1):45–52CrossRefPubMed
11.
go back to reference Gross R, Lima FD, Freitas CJ, Gross U (1990) The relationships between selected anthropometric and socio-economic data in schoolchildren from different social strata in Rio de Janeiro, Brazil. Rev Saude Publica 24(1):11–19CrossRefPubMed Gross R, Lima FD, Freitas CJ, Gross U (1990) The relationships between selected anthropometric and socio-economic data in schoolchildren from different social strata in Rio de Janeiro, Brazil. Rev Saude Publica 24(1):11–19CrossRefPubMed
12.
go back to reference Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Muñoz A, Warady BA (2006) Design and methods of the chronic kidney disease in children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1(5):1006–1015CrossRefPubMed Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Muñoz A, Warady BA (2006) Design and methods of the chronic kidney disease in children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1(5):1006–1015CrossRefPubMed
13.
go back to reference Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637CrossRefPubMedPubMedCentral Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20(3):629–637CrossRefPubMedPubMedCentral
14.
go back to reference de Souza V, Cochat P, Rabilloud M, Selistre L, Wagner M, Hadj-Aissa A, Dolomanova O, Ranchin B, Iwaz J, Dubourg L (2015) Accuracy of different equations in estimating GFR in pediatric kidney transplant recipients. Clin J Am Soc Nephrol 10(3):463–470CrossRefPubMedPubMedCentral de Souza V, Cochat P, Rabilloud M, Selistre L, Wagner M, Hadj-Aissa A, Dolomanova O, Ranchin B, Iwaz J, Dubourg L (2015) Accuracy of different equations in estimating GFR in pediatric kidney transplant recipients. Clin J Am Soc Nephrol 10(3):463–470CrossRefPubMedPubMedCentral
16.
go back to reference Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Muñoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82(4):445–453CrossRefPubMedPubMedCentral Schwartz GJ, Schneider MF, Maier PS, Moxey-Mims M, Dharnidharka VR, Warady BA, Furth SL, Muñoz A (2012) Improved equations estimating GFR in children with chronic kidney disease using an immunonephelometric determination of cystatin C. Kidney Int 82(4):445–453CrossRefPubMedPubMedCentral
17.
go back to reference Pierce CB, Cox C, Saland JM, Furth SL, Muñoz A (2011) Methods for characterizing differences in longitudinal glomerular filtration rate changes between children with glomerular chronic kidney disease and those with nonglomerular chronic kidney disease. Am J Epidemiol 174(5):604–612CrossRefPubMedPubMedCentral Pierce CB, Cox C, Saland JM, Furth SL, Muñoz A (2011) Methods for characterizing differences in longitudinal glomerular filtration rate changes between children with glomerular chronic kidney disease and those with nonglomerular chronic kidney disease. Am J Epidemiol 174(5):604–612CrossRefPubMedPubMedCentral
18.
go back to reference National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2):555–576CrossRef National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114(2):555–576CrossRef
19.
go back to reference Nwosu BU, Lee MM (2008) Evaluation of short and tall stature in children. Am Fam Physician 78(5):597–604PubMed Nwosu BU, Lee MM (2008) Evaluation of short and tall stature in children. Am Fam Physician 78(5):597–604PubMed
20.
go back to reference Ng DK, Moxey-Mims M, Warady BA, Furth SL, Muñoz A (2016) Racial differences in renal replacement therapy initiation among children with a nonglomerular cause of chronic kidney disease. Ann Epidemiol 26(11):780–787CrossRefPubMedPubMedCentral Ng DK, Moxey-Mims M, Warady BA, Furth SL, Muñoz A (2016) Racial differences in renal replacement therapy initiation among children with a nonglomerular cause of chronic kidney disease. Ann Epidemiol 26(11):780–787CrossRefPubMedPubMedCentral
22.
go back to reference Rees L, Mak RH (2011) Nutrition and growth in children with chronic kidney disease. Nat Rev Nephrol 7(11):615–623CrossRefPubMed Rees L, Mak RH (2011) Nutrition and growth in children with chronic kidney disease. Nat Rev Nephrol 7(11):615–623CrossRefPubMed
23.
go back to reference Apostolou A, Printza N, Karagiozoglou-Lampoudi T, Dotis J, Papachristou F (2014) Nutrition assessment of children with advanced stages of chronic kidney disease—a single center study. Hippokratia 18(3):212–216PubMedPubMedCentral Apostolou A, Printza N, Karagiozoglou-Lampoudi T, Dotis J, Papachristou F (2014) Nutrition assessment of children with advanced stages of chronic kidney disease—a single center study. Hippokratia 18(3):212–216PubMedPubMedCentral
24.
go back to reference Wesseling K, Bakkaloglu S, Salusky I (2008) Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol 23(2):195–207CrossRefPubMed Wesseling K, Bakkaloglu S, Salusky I (2008) Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol 23(2):195–207CrossRefPubMed
25.
go back to reference Hidalgo G, Ng DK, Moxey-Mims M, Minnick ML, Blydt-Hansen T, Warady BA, Furth SL (2013) Association of income level with kidney disease severity and progression among children and adolescents with CKD: a report from the chronic kidney disease in children (CKiD) study. Am J Kidney Dis 62(6):1087–1094CrossRefPubMed Hidalgo G, Ng DK, Moxey-Mims M, Minnick ML, Blydt-Hansen T, Warady BA, Furth SL (2013) Association of income level with kidney disease severity and progression among children and adolescents with CKD: a report from the chronic kidney disease in children (CKiD) study. Am J Kidney Dis 62(6):1087–1094CrossRefPubMed
26.
go back to reference Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9(2):344–353CrossRefPubMed Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9(2):344–353CrossRefPubMed
27.
go back to reference Van Husen M, Fischer AK, Lehnhardt A, Klaassen I, Möller K, Müller-Wiefel KMJ (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78(2):200–206CrossRefPubMed Van Husen M, Fischer AK, Lehnhardt A, Klaassen I, Möller K, Müller-Wiefel KMJ (2010) Fibroblast growth factor 23 and bone metabolism in children with chronic kidney disease. Kidney Int 78(2):200–206CrossRefPubMed
28.
go back to reference Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A, Ujszaszi A, Kiss I, Rosivall L, Kosa J, Lakatos P, Kovesdy CP, Mucsi I (2011) Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol 22(5):956–966CrossRefPubMedPubMedCentral Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A, Ujszaszi A, Kiss I, Rosivall L, Kosa J, Lakatos P, Kovesdy CP, Mucsi I (2011) Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol 22(5):956–966CrossRefPubMedPubMedCentral
29.
go back to reference Wesseling-Perry K, Tsai EW, Ettenger RB, Jüppner H, Salusky IB (2011) Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant 26(11):3779–3784CrossRefPubMedPubMedCentral Wesseling-Perry K, Tsai EW, Ettenger RB, Jüppner H, Salusky IB (2011) Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant 26(11):3779–3784CrossRefPubMedPubMedCentral
30.
go back to reference Seifert ME, Ashoor IF, Chiang ML, Chishti AS, Dietzen DJ, Gipson DS, Janjua HS, Selewski DT, Hruska KA (2016) Fibroblast growth factor-23 and chronic allograft injury in pediatric renal transplant recipients: a Midwest pediatric nephrology consortium study. Pediatr Transplant 20(3):378–387CrossRefPubMedPubMedCentral Seifert ME, Ashoor IF, Chiang ML, Chishti AS, Dietzen DJ, Gipson DS, Janjua HS, Selewski DT, Hruska KA (2016) Fibroblast growth factor-23 and chronic allograft injury in pediatric renal transplant recipients: a Midwest pediatric nephrology consortium study. Pediatr Transplant 20(3):378–387CrossRefPubMedPubMedCentral
31.
go back to reference Rees L (2016) Growth hormone therapy in children with CKD after more than two decades of practice. Pediatr Nephrol 31(9):1421–1435CrossRefPubMed Rees L (2016) Growth hormone therapy in children with CKD after more than two decades of practice. Pediatr Nephrol 31(9):1421–1435CrossRefPubMed
32.
go back to reference Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF (2015) Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. Endocr Rev 37(1):62–110CrossRefPubMed Wong SC, Dobie R, Altowati MA, Werther GA, Farquharson C, Ahmed SF (2015) Growth and the growth hormone-insulin like growth factor 1 axis in children with chronic inflammation: current evidence, gaps in knowledge, and future directions. Endocr Rev 37(1):62–110CrossRefPubMed
33.
go back to reference Van Ree RM, Oterdoom LH, De Vries AP, Gansevoort RT, van der Heide JJ, van Son WJ, Ploeg RJ, de Jong PE, Gans RO, Bakker SJ (2006) Elevated levels of C-reactive protein independently predict accelerated deterioration of graft function in renal transplant recipients. Nephrol Dial Transplant 22(1):246–253CrossRefPubMed Van Ree RM, Oterdoom LH, De Vries AP, Gansevoort RT, van der Heide JJ, van Son WJ, Ploeg RJ, de Jong PE, Gans RO, Bakker SJ (2006) Elevated levels of C-reactive protein independently predict accelerated deterioration of graft function in renal transplant recipients. Nephrol Dial Transplant 22(1):246–253CrossRefPubMed
34.
go back to reference Fink JC, Onuigbo MA, Blahut SA, Christenson RH, Mann D, Bartlett ST, Weir MR (2002) Pretransplant serum C-reactive protein and the risk of chronic allograft nephropathy in renal transplant recipients: a pilot case-control study. Am J Kidney Dis 39(5):1096–1101CrossRefPubMed Fink JC, Onuigbo MA, Blahut SA, Christenson RH, Mann D, Bartlett ST, Weir MR (2002) Pretransplant serum C-reactive protein and the risk of chronic allograft nephropathy in renal transplant recipients: a pilot case-control study. Am J Kidney Dis 39(5):1096–1101CrossRefPubMed
Metadata
Title
Short stature in advanced pediatric CKD is associated with faster time to reduced kidney function after transplant
Authors
Yijun Li
Larry A. Greenbaum
Bradley A. Warady
Susan L. Furth
Derek K. Ng
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 5/2019
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-018-4165-2

Other articles of this Issue 5/2019

Pediatric Nephrology 5/2019 Go to the issue