Skip to main content
Top
Published in: Pediatric Nephrology 10/2019

01-10-2019 | Educational Review

Fundamental insights into autosomal dominant polycystic kidney disease from human-based cell models

Authors: Caroline Weydert, Jean-Paul Decuypere, Humbert De Smedt, Peter Janssens, Rudi Vennekens, Djalila Mekahli

Published in: Pediatric Nephrology | Issue 10/2019

Login to get access

Abstract

Several animal- and human-derived models are used in autosomal dominant polycystic kidney disease (ADPKD) research to gain insight in the disease mechanism. However, a consistent correlation between animal and human ADPKD models is lacking. Therefore, established human-derived models are relevant to affirm research results and translate findings into a clinical set-up. In this review, we give an extensive overview of the existing human-based cell models. We discuss their source (urine, nephrectomy and stem cell), immortalisation procedures, genetic engineering, kidney segmental origin and characterisation with nephron segment markers. We summarise the most studied pathways and lessons learned from these different ADPKD models. Finally, we issue recommendations for the derivation of human-derived cell lines and for experimental set-ups with these cell lines.
Literature
2.
go back to reference Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, Duley IT, Jones RH (1992) Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int 41:1311–1319CrossRefPubMed Gabow PA, Johnson AM, Kaehny WD, Kimberling WJ, Lezotte DC, Duley IT, Jones RH (1992) Factors affecting the progression of renal disease in autosomal-dominant polycystic kidney disease. Kidney Int 41:1311–1319CrossRefPubMed
9.
go back to reference Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343. https://doi.org/10.1093/hmg/ddp165 CrossRefPubMed Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343. https://​doi.​org/​10.​1093/​hmg/​ddp165 CrossRefPubMed
10.
go back to reference Grantham JJ (2009) Autosomal dominant polycystic kidney disease. Ann Transplant 14:86–90 Grantham JJ (2009) Autosomal dominant polycystic kidney disease. Ann Transplant 14:86–90
11.
go back to reference Wilson PD, Schrier RW, Breckon RD, Gabow PA (1986) A new method for studying human polycystic kidney disease epithelia in culture. Kidney Int 30:371–378CrossRefPubMed Wilson PD, Schrier RW, Breckon RD, Gabow PA (1986) A new method for studying human polycystic kidney disease epithelia in culture. Kidney Int 30:371–378CrossRefPubMed
15.
go back to reference Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14(7):1804–1815CrossRefPubMed Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong AC (2003) Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 14(7):1804–1815CrossRefPubMed
19.
go back to reference Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292(3):F930–F945. https://doi.org/10.1152/ajprenal.00285.2006 CrossRefPubMed Xu C, Rossetti S, Jiang L, Harris PC, Brown-Glaberman U, Wandinger-Ness A, Bacallao R, Alper SL (2007) Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling. Am J Physiol Renal Physiol 292(3):F930–F945. https://​doi.​org/​10.​1152/​ajprenal.​00285.​2006 CrossRefPubMed
22.
go back to reference Mekahli D, Decuypere JP, Sammels E, Welkenhuyzen K, Schoeber J, Audrezet MP, Corvelyn A, Dechenes G, Ong AC, Wilmer MJ, van den Heuvel L, Bultynck G, Parys JB, Missiaen L, Levtchenko E, De Smedt H (2014) Polycystin-1 but not polycystin-2 deficiency causes upregulation of the mTOR pathway and can be synergistically targeted with rapamycin and metformin. Pflugers Arch 466(8):1591–1604. https://doi.org/10.1007/s00424-013-1394-x CrossRefPubMed Mekahli D, Decuypere JP, Sammels E, Welkenhuyzen K, Schoeber J, Audrezet MP, Corvelyn A, Dechenes G, Ong AC, Wilmer MJ, van den Heuvel L, Bultynck G, Parys JB, Missiaen L, Levtchenko E, De Smedt H (2014) Polycystin-1 but not polycystin-2 deficiency causes upregulation of the mTOR pathway and can be synergistically targeted with rapamycin and metformin. Pflugers Arch 466(8):1591–1604. https://​doi.​org/​10.​1007/​s00424-013-1394-x CrossRefPubMed
23.
27.
go back to reference Carone FA, Nakamura S, Schumacher BS, Punyarit P, Bauer KD (1989) Cyst-derived cells do not exhibit accelerated growth or features of transformed cells in vitro. Kidney Int 35(6):1351–1357CrossRefPubMed Carone FA, Nakamura S, Schumacher BS, Punyarit P, Bauer KD (1989) Cyst-derived cells do not exhibit accelerated growth or features of transformed cells in vitro. Kidney Int 35(6):1351–1357CrossRefPubMed
28.
go back to reference Wallace DP, Grantham JJ, Sullivan LP (1996) Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50(4):1327–1336CrossRefPubMed Wallace DP, Grantham JJ, Sullivan LP (1996) Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50(4):1327–1336CrossRefPubMed
32.
go back to reference Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu XQ, Aboudehen K, Zhang SR, Kersjes K, Galasso R, Li J, Kaimal V, Lockton S, Davis S, Flaten A, Johnson JA, Holland WL, Kusminski CM, Scherer PE, Harris PC, Trudel M, Wallace DP, Igarashi P, Lee EC, Androsavich JR, Patel V (2017) MicroRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8. doi: Artn 14395. https://doi.org/10.1038/Ncomms14395 Hajarnis S, Lakhia R, Yheskel M, Williams D, Sorourian M, Liu XQ, Aboudehen K, Zhang SR, Kersjes K, Galasso R, Li J, Kaimal V, Lockton S, Davis S, Flaten A, Johnson JA, Holland WL, Kusminski CM, Scherer PE, Harris PC, Trudel M, Wallace DP, Igarashi P, Lee EC, Androsavich JR, Patel V (2017) MicroRNA-17 family promotes polycystic kidney disease progression through modulation of mitochondrial metabolism. Nat Commun 8. doi: Artn 14395. https://​doi.​org/​10.​1038/​Ncomms14395
33.
go back to reference Ben-Dov IZ, Tan YC, Morozov P, Wilson PD, Rennert H, Blumenfeld JD, Tuschl T (2014) Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS ONE 9 (1). doi: ARTN e86856. https://doi.org/10.1371/journal.pone.0086856 Ben-Dov IZ, Tan YC, Morozov P, Wilson PD, Rennert H, Blumenfeld JD, Tuschl T (2014) Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS ONE 9 (1). doi: ARTN e86856. https://​doi.​org/​10.​1371/​journal.​pone.​0086856
36.
go back to reference Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715. https://doi.org/10.1038/ncomms9715 CrossRefPubMed Freedman BS, Brooks CR, Lam AQ, Fu H, Morizane R, Agrawal V, Saad AF, Li MK, Hughes MR, Werff RV, Peters DT, Lu J, Baccei A, Siedlecki AM, Valerius MT, Musunuru K, McNagny KM, Steinman TI, Zhou J, Lerou PH, Bonventre JV (2015) Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun 6:8715. https://​doi.​org/​10.​1038/​ncomms9715 CrossRefPubMed
47.
go back to reference MacKay K, Striker LJ, Pinkert CA, Brinster RL, Striker GE (1987) Glomerulosclerosis and renal cysts in mice transgenic for the early region of SV40. Kidney Int 32(6):827–837CrossRefPubMed MacKay K, Striker LJ, Pinkert CA, Brinster RL, Striker GE (1987) Glomerulosclerosis and renal cysts in mice transgenic for the early region of SV40. Kidney Int 32(6):827–837CrossRefPubMed
48.
go back to reference Mckay RDG, Jat PS, Lamazan G (1993) Method for manipulation of the cell types of eukaryotes. Google Patents Mckay RDG, Jat PS, Lamazan G (1993) Method for manipulation of the cell types of eukaryotes. Google Patents
49.
go back to reference Loeber G, Tevethia MJ, Schwedes JF, Tegtmeyer P (1989) Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen. J Virol 63:4426–4430PubMedPubMedCentral Loeber G, Tevethia MJ, Schwedes JF, Tegtmeyer P (1989) Temperature-sensitive mutants identify crucial structural regions of simian virus 40 large T antigen. J Virol 63:4426–4430PubMedPubMedCentral
52.
go back to reference Nouwen EJ, Dauwe S, van der Biest I, De Broe ME (1993) Stage- and segment-specific expression of cell-adhesion molecules N-CAM, A-CAM, and L-CAM in the kidney. Kidney Int 44(1):147–158CrossRefPubMed Nouwen EJ, Dauwe S, van der Biest I, De Broe ME (1993) Stage- and segment-specific expression of cell-adhesion molecules N-CAM, A-CAM, and L-CAM in the kidney. Kidney Int 44(1):147–158CrossRefPubMed
53.
go back to reference Knepper MA, Brooks HL (2001) Regulation of the sodium transporters NHE3, NKCC2 and NCC in the kidney. Curr Opin Nephrol Hypertens 10(5):655–659CrossRefPubMed Knepper MA, Brooks HL (2001) Regulation of the sodium transporters NHE3, NKCC2 and NCC in the kidney. Curr Opin Nephrol Hypertens 10(5):655–659CrossRefPubMed
54.
go back to reference Yamada H, Yamazaki S, Moriyama N, Hara C, Horita S, Enomoto Y, Kudo A, Kawakami H, Tanaka Y, Fujita T, Seki G (2003) Localization of NBC-1 variants in human kidney and renal cell carcinoma. Biochem Biophys Res Commun 310(4):1213–1218CrossRefPubMed Yamada H, Yamazaki S, Moriyama N, Hara C, Horita S, Enomoto Y, Kudo A, Kawakami H, Tanaka Y, Fujita T, Seki G (2003) Localization of NBC-1 variants in human kidney and renal cell carcinoma. Biochem Biophys Res Commun 310(4):1213–1218CrossRefPubMed
56.
go back to reference Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13(4):866–874PubMed Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13(4):866–874PubMed
57.
go back to reference Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, Kanai Y, Sophasan S, Endou H (2004) Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci 94(3):297–304CrossRefPubMed Ekaratanawong S, Anzai N, Jutabha P, Miyazaki H, Noshiro R, Takeda M, Kanai Y, Sophasan S, Endou H (2004) Human organic anion transporter 4 is a renal apical organic anion/dicarboxylate exchanger in the proximal tubules. J Pharmacol Sci 94(3):297–304CrossRefPubMed
58.
go back to reference Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84(21):7735–7738CrossRefPubMedPubMedCentral Thiebaut F, Tsuruo T, Hamada H, Gottesman MM, Pastan I, Willingham MC (1987) Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 84(21):7735–7738CrossRefPubMedPubMedCentral
59.
go back to reference Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S (1997) Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8(1):1–14PubMed Maunsbach AB, Marples D, Chin E, Ning G, Bondy C, Agre P, Nielsen S (1997) Aquaporin-1 water channel expression in human kidney. J Am Soc Nephrol 8(1):1–14PubMed
60.
go back to reference van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG (2002) The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 13(3):595–603PubMed van Aubel RA, Smeets PH, Peters JG, Bindels RJ, Russel FG (2002) The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP. J Am Soc Nephrol 13(3):595–603PubMed
62.
go back to reference Ernest S, Rajaraman S, Megyesi J, Bello-Reuss EN (1997) Expression of MDR1 (multidrug resistance) gene and its protein in normal human kidney. Nephron 77(3):284–289CrossRefPubMed Ernest S, Rajaraman S, Megyesi J, Bello-Reuss EN (1997) Expression of MDR1 (multidrug resistance) gene and its protein in normal human kidney. Nephron 77(3):284–289CrossRefPubMed
63.
go back to reference Baer PC, Nockher WA, Haase W, Scherberich JE (1997) Isolation of proximal and distal tubule cells from human kidney by immunomagnetic separation. Technical note. Kidney Int 52(5):1321–1331CrossRefPubMed Baer PC, Nockher WA, Haase W, Scherberich JE (1997) Isolation of proximal and distal tubule cells from human kidney by immunomagnetic separation. Technical note. Kidney Int 52(5):1321–1331CrossRefPubMed
66.
go back to reference Lorkowski G, Zijderhand-Bleekemolen JE, Erdos EG, von Figura K, Hasilik A (1987) Neutral endopeptidase-24.11 (enkephalinase). Biosynthesis and localization in human fibroblasts. Biochem J 248(2):345–350CrossRefPubMedPubMedCentral Lorkowski G, Zijderhand-Bleekemolen JE, Erdos EG, von Figura K, Hasilik A (1987) Neutral endopeptidase-24.11 (enkephalinase). Biosynthesis and localization in human fibroblasts. Biochem J 248(2):345–350CrossRefPubMedPubMedCentral
68.
go back to reference Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31(5):1145–1152CrossRefPubMed Grantham JJ, Geiser JL, Evan AP (1987) Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31(5):1145–1152CrossRefPubMed
69.
go back to reference Murata F, Tsuyama S, Suzuki S, Hamada H, Ozawa M, Muramatsu T (1983) Distribution of glycoconjugates in the kidney studied by use of labeled lectins. J Histochem Cytochem 31(1A Suppl):139–144CrossRefPubMed Murata F, Tsuyama S, Suzuki S, Hamada H, Ozawa M, Muramatsu T (1983) Distribution of glycoconjugates in the kidney studied by use of labeled lectins. J Histochem Cytochem 31(1A Suppl):139–144CrossRefPubMed
70.
go back to reference Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13(4):836–847PubMed Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13(4):836–847PubMed
73.
go back to reference Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13(10):2508–2516CrossRefPubMed Yoder BK, Hou X, Guay-Woodford LM (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. J Am Soc Nephrol 13(10):2508–2516CrossRefPubMed
78.
81.
go back to reference Hanaoka K, Guggino WB (2000) cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol 11(7):1179–1187PubMed Hanaoka K, Guggino WB (2000) cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol 11(7):1179–1187PubMed
82.
go back to reference Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 98(3):1182–1187CrossRefPubMed Gonzalez-Perrett S, Kim K, Ibarra C, Damiano AE, Zotta E, Batelli M, Harris PC, Reisin IL, Arnaout MA, Cantiello HF (2001) Polycystin-2, the protein mutated in autosomal dominant polycystic kidney disease (ADPKD), is a Ca2+-permeable nonselective cation channel. Proc Natl Acad Sci U S A 98(3):1182–1187CrossRefPubMed
84.
go back to reference Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96(7):3934–3939CrossRefPubMedPubMedCentral Tsiokas L, Arnould T, Zhu C, Kim E, Walz G, Sukhatme VP (1999) Specific association of the gene product of PKD2 with the TRPC1 channel. Proc Natl Acad Sci U S A 96(7):3934–3939CrossRefPubMedPubMedCentral
86.
100.
go back to reference Neufeld TK, Douglass D, Grant M, Ye M, Silva F, Nadasdy T, Grantham JJ (1992) In vitro formation and expansion of cysts derived from human renal cortex epithelial cells. Kidney Int 41(5):1222–1236CrossRefPubMed Neufeld TK, Douglass D, Grant M, Ye M, Silva F, Nadasdy T, Grantham JJ (1992) In vitro formation and expansion of cysts derived from human renal cortex epithelial cells. Kidney Int 41(5):1222–1236CrossRefPubMed
101.
go back to reference Yamaguchi T, Nagao S, Kasahara M, Takahashi H, Grantham JJ (1997) Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 30(5):703–709CrossRefPubMed Yamaguchi T, Nagao S, Kasahara M, Takahashi H, Grantham JJ (1997) Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease. Am J Kidney Dis 30(5):703–709CrossRefPubMed
102.
go back to reference Grantham JJ, Ye M, Davidow C, Holub B, Sharma M (1995) Evidence for a potent lipid secretagogue in the cyst fluids of patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 6(4):1242–1249PubMed Grantham JJ, Ye M, Davidow C, Holub B, Sharma M (1995) Evidence for a potent lipid secretagogue in the cyst fluids of patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 6(4):1242–1249PubMed
103.
go back to reference Ye M, Grant M, Sharma M, Elzinga L, Swan S, Torres VE, Grantham JJ (1992) Cyst fluid from human autosomal dominant polycystic kidneys promotes cyst formation and expansion by renal epithelial cells in vitro. J Am Soc Nephrol 3(4):984–994PubMed Ye M, Grant M, Sharma M, Elzinga L, Swan S, Torres VE, Grantham JJ (1992) Cyst fluid from human autosomal dominant polycystic kidneys promotes cyst formation and expansion by renal epithelial cells in vitro. J Am Soc Nephrol 3(4):984–994PubMed
111.
114.
Metadata
Title
Fundamental insights into autosomal dominant polycystic kidney disease from human-based cell models
Authors
Caroline Weydert
Jean-Paul Decuypere
Humbert De Smedt
Peter Janssens
Rudi Vennekens
Djalila Mekahli
Publication date
01-10-2019
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 10/2019
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-018-4057-5

Other articles of this Issue 10/2019

Pediatric Nephrology 10/2019 Go to the issue