Skip to main content
Top
Published in: Pediatric Nephrology 6/2019

Open Access 01-06-2019 | Review

Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction

Authors: Gerhard R. Situmorang, Neil S. Sheerin

Published in: Pediatric Nephrology | Issue 6/2019

Login to get access

Abstract

The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Literature
1.
go back to reference Heung M, Chawla LS (2014) Acute kidney injury: gateway to chronic kidney disease. Nephron Clin Pract 127:30–34CrossRefPubMed Heung M, Chawla LS (2014) Acute kidney injury: gateway to chronic kidney disease. Nephron Clin Pract 127:30–34CrossRefPubMed
2.
go back to reference Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530CrossRefPubMed Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530CrossRefPubMed
3.
go back to reference Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR (2009) Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant 24:1039–1047CrossRefPubMed Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR (2009) Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant 24:1039–1047CrossRefPubMed
4.
go back to reference Safran M, Kim WY, O'Connell F, Flippin L, Günzler V, Horner JW, DePinho RA, Kaelin WG (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A 103:105–110CrossRefPubMed Safran M, Kim WY, O'Connell F, Flippin L, Günzler V, Horner JW, DePinho RA, Kaelin WG (2006) Mouse model for noninvasive imaging of HIF prolyl hydroxylase activity: assessment of an oral agent that stimulates erythropoietin production. Proc Natl Acad Sci U S A 103:105–110CrossRefPubMed
5.
go back to reference Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG (2014) Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 307:F1111CrossRefPubMed Ngo JP, Kar S, Kett MM, Gardiner BS, Pearson JT, Smith DW, Ludbrook J, Bertram JF, Evans RG (2014) Vascular geometry and oxygen diffusion in the vicinity of artery-vein pairs in the kidney. Am J Physiol Renal Physiol 307:F1111CrossRefPubMed
6.
go back to reference Tullius SG, Reutzel-Selke A, Egermann F, Nieminen-KelhÄ M, Jonas S, Bechstein WO, Volk H-D, Neuhaus P (2000) Contribution of prolonged ischemia and donor age to chronic renal allograft dysfunction. J Am Soc Nephrol 11:1317–1324PubMed Tullius SG, Reutzel-Selke A, Egermann F, Nieminen-KelhÄ M, Jonas S, Bechstein WO, Volk H-D, Neuhaus P (2000) Contribution of prolonged ischemia and donor age to chronic renal allograft dysfunction. J Am Soc Nephrol 11:1317–1324PubMed
7.
go back to reference Jayle C, Faure JP, Thuillier R, Goujon JM, Richer JP, Hauet T (2009) Influence of nephron mass and a phosphorylated 38 mitogen-activated protein kinase inhibitor on the development of early and long-term injury after renal warm ischaemia. Br J Surg 96:799–808CrossRefPubMed Jayle C, Faure JP, Thuillier R, Goujon JM, Richer JP, Hauet T (2009) Influence of nephron mass and a phosphorylated 38 mitogen-activated protein kinase inhibitor on the development of early and long-term injury after renal warm ischaemia. Br J Surg 96:799–808CrossRefPubMed
8.
go back to reference Wong G, Teixeira-Pinto A, Chapman JR, Craig JC, Pleass H, McDonald S, Lim WH (2017) The impact of Total ischemic time, donor age and the pathway of donor death on graft outcomes after deceased donor kidney transplantation. Transplantation 101:1152–1158CrossRefPubMed Wong G, Teixeira-Pinto A, Chapman JR, Craig JC, Pleass H, McDonald S, Lim WH (2017) The impact of Total ischemic time, donor age and the pathway of donor death on graft outcomes after deceased donor kidney transplantation. Transplantation 101:1152–1158CrossRefPubMed
9.
go back to reference Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25CrossRefPubMed Nangaku M (2006) Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J Am Soc Nephrol 17:17–25CrossRefPubMed
10.
go back to reference Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28:998–1006CrossRefPubMed Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28:998–1006CrossRefPubMed
11.
go back to reference Tanaka S, Tanaka T, Nangaku M (2014) Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 307:F1187CrossRefPubMed Tanaka S, Tanaka T, Nangaku M (2014) Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 307:F1187CrossRefPubMed
12.
go back to reference Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ (2017) Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 8:4188–4202CrossRefPubMedPubMedCentral Burslem GM, Kyle HF, Nelson A, Edwards TA, Wilson AJ (2017) Hypoxia inducible factor (HIF) as a model for studying inhibition of protein-protein interactions. Chem Sci 8:4188–4202CrossRefPubMedPubMedCentral
13.
14.
go back to reference Rabinowitz MH (2013) Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J Med Chem 56:9369–9402CrossRefPubMed Rabinowitz MH (2013) Inhibition of hypoxia-inducible factor prolyl hydroxylase domain oxygen sensors: tricking the body into mounting orchestrated survival and repair responses. J Med Chem 56:9369–9402CrossRefPubMed
15.
go back to reference Conde E, Alegre L, Blanco-Sanchez I, Saenz-Morales D, Aguado-Fraile E, Ponte B, Ramos E, Saiz A, Jimenez C, Ordonez A, Lopez-Cabrera M, del Peso L, de Landazuri MO, Liano F, Selgas R, Sanchez-Tomero JA, Garcia-Bermejo ML (2012) Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS One 7:e33258CrossRefPubMedPubMedCentral Conde E, Alegre L, Blanco-Sanchez I, Saenz-Morales D, Aguado-Fraile E, Ponte B, Ramos E, Saiz A, Jimenez C, Ordonez A, Lopez-Cabrera M, del Peso L, de Landazuri MO, Liano F, Selgas R, Sanchez-Tomero JA, Garcia-Bermejo ML (2012) Hypoxia inducible factor 1-alpha (HIF-1 alpha) is induced during reperfusion after renal ischemia and is critical for proximal tubule cell survival. PLoS One 7:e33258CrossRefPubMedPubMedCentral
16.
go back to reference Nangaku M, Rosenberger C, Heyman SN, Eckardt KU (2013) Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 40:148–157CrossRefPubMed Nangaku M, Rosenberger C, Heyman SN, Eckardt KU (2013) Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 40:148–157CrossRefPubMed
17.
go back to reference Rosenberger C, Pratschke J, Rudolph B, Heyman SN, Schindler R, Babel N, Eckardt KU, Frei U, Rosen S, Reinke P (2007) Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies. J Am Soc Nephrol 18:343–351CrossRefPubMed Rosenberger C, Pratschke J, Rudolph B, Heyman SN, Schindler R, Babel N, Eckardt KU, Frei U, Rosen S, Reinke P (2007) Immunohistochemical detection of hypoxia-inducible factor-1alpha in human renal allograft biopsies. J Am Soc Nephrol 18:343–351CrossRefPubMed
18.
go back to reference Deng A, Arndt MA, Satriano J, Singh P, Rieg T, Thomson S, Tang T, Blantz RC (2010) Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am J Physiol Renal Physiol 299:F1365–F1373CrossRefPubMedPubMedCentral Deng A, Arndt MA, Satriano J, Singh P, Rieg T, Thomson S, Tang T, Blantz RC (2010) Renal protection in chronic kidney disease: hypoxia-inducible factor activation vs. angiotensin II blockade. Am J Physiol Renal Physiol 299:F1365–F1373CrossRefPubMedPubMedCentral
19.
go back to reference Kapitsinou PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, Haase VH (2012) Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am J Physiol Renal Physiol 302:F1172–F1179CrossRefPubMedPubMedCentral Kapitsinou PP, Jaffe J, Michael M, Swan CE, Duffy KJ, Erickson-Miller CL, Haase VH (2012) Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury. Am J Physiol Renal Physiol 302:F1172–F1179CrossRefPubMedPubMedCentral
20.
go back to reference Kobayashi H, Gilbert V, Liu Q, Kapitsinou PP, Unger TL, Rha J, Rivella S, Schlondorff D, Haase VH (2012) Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. J Immunol 188:5106–5115CrossRefPubMed Kobayashi H, Gilbert V, Liu Q, Kapitsinou PP, Unger TL, Rha J, Rivella S, Schlondorff D, Haase VH (2012) Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury. J Immunol 188:5106–5115CrossRefPubMed
21.
go back to reference Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, Li N (2014) Silencing of hypoxia-inducible factor-1alpha gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol 306:F1236–F1242CrossRefPubMedPubMedCentral Wang Z, Zhu Q, Li PL, Dhaduk R, Zhang F, Gehr TW, Li N (2014) Silencing of hypoxia-inducible factor-1alpha gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats. Am J Physiol Renal Physiol 306:F1236–F1242CrossRefPubMedPubMedCentral
22.
go back to reference Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820PubMedPubMedCentral Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820PubMedPubMedCentral
23.
go back to reference Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C, Dong Z (2017) Hypoxia, HIF, and associated signaling networks in chronic kidney disease. Int J Mol Sci 18:1–17 Liu J, Wei Q, Guo C, Dong G, Liu Y, Tang C, Dong Z (2017) Hypoxia, HIF, and associated signaling networks in chronic kidney disease. Int J Mol Sci 18:1–17
24.
go back to reference Higgins DF, Kimura K, Iwano M, Haase VH (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7:1128–1132CrossRefPubMed Higgins DF, Kimura K, Iwano M, Haase VH (2008) Hypoxia-inducible factor signaling in the development of tissue fibrosis. Cell Cycle 7:1128–1132CrossRefPubMed
25.
go back to reference Baumann B, Hayashida T, Liang X, Schnaper HW (2016) Hypoxia-inducible factor-1alpha promotes glomerulosclerosis and regulates COL1A2 expression through interactions with SMAD3. Kidney Int 90:797–808CrossRefPubMedPubMedCentral Baumann B, Hayashida T, Liang X, Schnaper HW (2016) Hypoxia-inducible factor-1alpha promotes glomerulosclerosis and regulates COL1A2 expression through interactions with SMAD3. Kidney Int 90:797–808CrossRefPubMedPubMedCentral
26.
go back to reference Li X, Kimura H, Hirota K, Kasuno K, Torii K, Okada T, Kurooka H, Yokota Y, Yoshida H (2005) Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney Int 68:569–583CrossRefPubMed Li X, Kimura H, Hirota K, Kasuno K, Torii K, Okada T, Kurooka H, Yokota Y, Yoshida H (2005) Synergistic effect of hypoxia and TNF-alpha on production of PAI-1 in human proximal renal tubular cells. Kidney Int 68:569–583CrossRefPubMed
27.
go back to reference Norman JT, Clark IM, Garcia PL (2000) Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 58:2351–2366CrossRefPubMed Norman JT, Clark IM, Garcia PL (2000) Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int 58:2351–2366CrossRefPubMed
28.
go back to reference Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288:10819–10829CrossRefPubMedPubMedCentral Gilkes DM, Bajpai S, Chaturvedi P, Wirtz D, Semenza GL (2013) Hypoxia-inducible factor 1 (HIF-1) promotes extracellular matrix remodeling under hypoxic conditions by inducing P4HA1, P4HA2, and PLOD2 expression in fibroblasts. J Biol Chem 288:10819–10829CrossRefPubMedPubMedCentral
29.
go back to reference Orphanides C, Fine LG, Norman JT (1997) Hypoxia stimulates proximal tubular cell matrix production via a TGF-beta1-independent mechanism. Kidney Int 52:637–647CrossRefPubMed Orphanides C, Fine LG, Norman JT (1997) Hypoxia stimulates proximal tubular cell matrix production via a TGF-beta1-independent mechanism. Kidney Int 52:637–647CrossRefPubMed
30.
go back to reference Wang S, Zeng H, Chen ST, Zhou L, Xie XJ, He X, Tao YK, Tuo QH, Deng C, Liao DF, Chen JX (2017) Ablation of endothelial prolyl hydroxylase domain protein-2 promotes renal vascular remodelling and fibrosis in mice. J Cell Mol Med 20:1–12 Wang S, Zeng H, Chen ST, Zhou L, Xie XJ, He X, Tao YK, Tuo QH, Deng C, Liao DF, Chen JX (2017) Ablation of endothelial prolyl hydroxylase domain protein-2 promotes renal vascular remodelling and fibrosis in mice. J Cell Mol Med 20:1–12
31.
go back to reference Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905CrossRefPubMedPubMedCentral Basu RK, Hubchak S, Hayashida T, Runyan CE, Schumacker PT, Schnaper HW (2011) Interdependence of HIF-1alpha and TGF-beta/Smad3 signaling in normoxic and hypoxic renal epithelial cell collagen expression. Am J Physiol Renal Physiol 300:F898–F905CrossRefPubMedPubMedCentral
32.
go back to reference Yoshimura A, Muto G (2011) TGF-β function in immune suppression. In: Ahmed R, Honjo T (eds) Negative co-receptors and ligands. Springer Berlin Heidelberg, Berlin, pp 127–147 Yoshimura A, Muto G (2011) TGF-β function in immune suppression. In: Ahmed R, Honjo T (eds) Negative co-receptors and ligands. Springer Berlin Heidelberg, Berlin, pp 127–147
33.
go back to reference Lee S, Kim DJ, Park MG, Park SK, Kim JS, Hyun SJ, Oh JE, Nam ES, Joo SH (2008) Expression of transforming growth factor-beta1 and hypoxia-inducible factor-1alpha in renal transplantation. Transplant Proc 40:2147–2148CrossRefPubMed Lee S, Kim DJ, Park MG, Park SK, Kim JS, Hyun SJ, Oh JE, Nam ES, Joo SH (2008) Expression of transforming growth factor-beta1 and hypoxia-inducible factor-1alpha in renal transplantation. Transplant Proc 40:2147–2148CrossRefPubMed
34.
go back to reference Du R, Xia L, Ning X, Liu L, Sun W, Huang C, Wang H, Sun S (2014) Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol Biol Cell 25:2650–2659CrossRefPubMedPubMedCentral Du R, Xia L, Ning X, Liu L, Sun W, Huang C, Wang H, Sun S (2014) Hypoxia-induced Bmi1 promotes renal tubular epithelial cell-mesenchymal transition and renal fibrosis via PI3K/Akt signal. Mol Biol Cell 25:2650–2659CrossRefPubMedPubMedCentral
35.
go back to reference Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, Zhang W, Grenz A, Eltzschig HK, Tao L, Kellems RE, Xia Y (2015) Elevated endothelial hypoxia-inducible factor-1alpha contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension 66:75–84CrossRefPubMed Luo R, Zhang W, Zhao C, Zhang Y, Wu H, Jin J, Zhang W, Grenz A, Eltzschig HK, Tao L, Kellems RE, Xia Y (2015) Elevated endothelial hypoxia-inducible factor-1alpha contributes to glomerular injury and promotes hypertensive chronic kidney disease. Hypertension 66:75–84CrossRefPubMed
36.
go back to reference Yamaguchi J, Tanaka T, Eto N, Nangaku M (2015) Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein delta. Kidney Int 88:262–275CrossRefPubMedPubMedCentral Yamaguchi J, Tanaka T, Eto N, Nangaku M (2015) Inflammation and hypoxia linked to renal injury by CCAAT/enhancer-binding protein delta. Kidney Int 88:262–275CrossRefPubMedPubMedCentral
38.
go back to reference Sutton TA (2009) Alteration of microvascular permeability in acute kidney injury. Microvasc Res 77:4–7CrossRefPubMed Sutton TA (2009) Alteration of microvascular permeability in acute kidney injury. Microvasc Res 77:4–7CrossRefPubMed
39.
go back to reference Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35:96–107CrossRefPubMed Verma SK, Molitoris BA (2015) Renal endothelial injury and microvascular dysfunction in acute kidney injury. Semin Nephrol 35:96–107CrossRefPubMed
40.
go back to reference Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY (2009) Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 11:e19–e19CrossRefPubMedPubMedCentral Kumar P, Shen Q, Pivetti CD, Lee ES, Wu MH, Yuan SY (2009) Molecular mechanisms of endothelial hyperpermeability: implications in inflammation. Expert Rev Mol Med 11:e19–e19CrossRefPubMedPubMedCentral
42.
go back to reference Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887CrossRefPubMed Basile DP, Donohoe D, Roethe K, Osborn JL (2001) Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol 281:F887CrossRefPubMed
43.
go back to reference Steegh FMEG, Gelens MACJ, Nieman FHM, van Hooff JP, Cleutjens JPM, van Suylen RJ, Daemen MJAP, van Heurn ELW, Christiaans MHL, Peutz-Kootstra CJ (2011) Early loss of peritubular capillaries after kidney transplantation. J Am Soc Nephrol 22:1024–1029CrossRefPubMedPubMedCentral Steegh FMEG, Gelens MACJ, Nieman FHM, van Hooff JP, Cleutjens JPM, van Suylen RJ, Daemen MJAP, van Heurn ELW, Christiaans MHL, Peutz-Kootstra CJ (2011) Early loss of peritubular capillaries after kidney transplantation. J Am Soc Nephrol 22:1024–1029CrossRefPubMedPubMedCentral
44.
45.
go back to reference Basile DP, Donohoe DL, Roethe K, Mattson DL (2003) Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am J Physiol Renal Physiol 284:F338CrossRefPubMed Basile DP, Donohoe DL, Roethe K, Mattson DL (2003) Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage. Am J Physiol Renal Physiol 284:F338CrossRefPubMed
46.
go back to reference Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP (2007) Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol 293:F269–F278CrossRefPubMed Spurgeon-Pechman KR, Donohoe DL, Mattson DL, Lund H, James L, Basile DP (2007) Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am J Physiol Renal Physiol 293:F269–F278CrossRefPubMed
47.
go back to reference Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 300:F721–F733CrossRefPubMed Basile DP, Friedrich JL, Spahic J, Knipe N, Mang H, Leonard EC, Changizi-Ashtiyani S, Bacallao RL, Molitoris BA, Sutton TA (2011) Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury. Am J Physiol Renal Physiol 300:F721–F733CrossRefPubMed
48.
go back to reference Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156CrossRefPubMed Basile DP (2007) The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int 72:151–156CrossRefPubMed
49.
go back to reference Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H (2001) Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney Int 60:1173–1181CrossRefPubMed Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H (2001) Prolonged cold preservation augments vascular injury independent of renal transplant immunogenicity and function. Kidney Int 60:1173–1181CrossRefPubMed
50.
go back to reference Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979CrossRefPubMed Neto JS, Nakao A, Kimizuka K, Romanosky AJ, Stolz DB, Uchiyama T, Nalesnik MA, Otterbein LE, Murase N (2004) Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol 287:F979CrossRefPubMed
51.
go back to reference Kosieradzki M, Rowinski W (2008) Ischemia/reperfusion injury in kidney transplantation: mechanism and prevention. Transplant Proc 40:3279–3288CrossRefPubMed Kosieradzki M, Rowinski W (2008) Ischemia/reperfusion injury in kidney transplantation: mechanism and prevention. Transplant Proc 40:3279–3288CrossRefPubMed
52.
go back to reference Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175CrossRefPubMed Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13:159–175CrossRefPubMed
53.
go back to reference Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA (2013) Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 24:1274–1287CrossRefPubMedPubMedCentral Chaturvedi S, Yuen DA, Bajwa A, Huang YW, Sokollik C, Huang L, Lam GY, Tole S, Liu GY, Pan J, Chan L, Sokolskyy Y, Puthia M, Godaly G, John R, Wang C, Lee WL, Brumell JH, Okusa MD, Robinson LA (2013) Slit2 prevents neutrophil recruitment and renal ischemia-reperfusion injury. J Am Soc Nephrol 24:1274–1287CrossRefPubMedPubMedCentral
54.
go back to reference Kinsey GR, Li L, Okusa MD (2008) Inflammation in acute kidney injury. Nephron Exp Nephrol 109:e102–e107CrossRefPubMed Kinsey GR, Li L, Okusa MD (2008) Inflammation in acute kidney injury. Nephron Exp Nephrol 109:e102–e107CrossRefPubMed
55.
go back to reference Thornton MA, Winn R, Alpers CE, Zager RA (1989) An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am J Pathol 135:509–515PubMedPubMedCentral Thornton MA, Winn R, Alpers CE, Zager RA (1989) An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am J Pathol 135:509–515PubMedPubMedCentral
56.
go back to reference Yago T, Petrich BG, Zhang N, Liu Z, Shao B, Ginsberg MH, McEver RP (2015) Blocking neutrophil integrin activation prevents ischemia–reperfusion injury. J Exp Med 212:1267CrossRefPubMedPubMedCentral Yago T, Petrich BG, Zhang N, Liu Z, Shao B, Ginsberg MH, McEver RP (2015) Blocking neutrophil integrin activation prevents ischemia–reperfusion injury. J Exp Med 212:1267CrossRefPubMedPubMedCentral
57.
go back to reference Kelly KJ, Williams WW, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063CrossRefPubMedPubMedCentral Kelly KJ, Williams WW, Colvin RB, Meehan SM, Springer TA, Gutierrez-Ramos JC, Bonventre JV (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063CrossRefPubMedPubMedCentral
58.
go back to reference Haug CE, Colvin RB, Delmonico FL, Auchincloss H Jr, Tolkoff-Rubin N, Preffer FI, Rothlein R, Norris S, Scharschmidt L, Cosimi AB (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55:766–772CrossRefPubMed Haug CE, Colvin RB, Delmonico FL, Auchincloss H Jr, Tolkoff-Rubin N, Preffer FI, Rothlein R, Norris S, Scharschmidt L, Cosimi AB (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients. Transplantation 55:766–772CrossRefPubMed
59.
go back to reference Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL (2002) Neutrophil-independent mechanisms of caspase-1– and IL-18–mediated ischemic acute tubular necrosis in mice. J Clin Invest 110:1083–1091CrossRefPubMedPubMedCentral Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL (2002) Neutrophil-independent mechanisms of caspase-1– and IL-18–mediated ischemic acute tubular necrosis in mice. J Clin Invest 110:1083–1091CrossRefPubMedPubMedCentral
60.
go back to reference Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L, Persson N, Neumayer HH, Jorgensen PF, Spieker C, Hendry B, Nicholls A, Kirste G, Hasche G (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European anti-ICAM-1 renal transplant study group. Transplantation 67:729–736CrossRefPubMed Salmela K, Wramner L, Ekberg H, Hauser I, Bentdal O, Lins LE, Isoniemi H, Backman L, Persson N, Neumayer HH, Jorgensen PF, Spieker C, Hendry B, Nicholls A, Kirste G, Hasche G (1999) A randomized multicenter trial of the anti-ICAM-1 monoclonal antibody (enlimomab) for the prevention of acute rejection and delayed onset of graft function in cadaveric renal transplantation: a report of the European anti-ICAM-1 renal transplant study group. Transplantation 67:729–736CrossRefPubMed
61.
go back to reference Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491CrossRefPubMed Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66:486–491CrossRefPubMed
62.
go back to reference Lu L, Faubel S, He Z, Andres Hernando A, Jani A, Kedl R, Edelstein CL (2012) Depletion of macrophages and dendritic cells in ischemic acute kidney injury. Am J Nephrol 35:181–190CrossRefPubMedPubMedCentral Lu L, Faubel S, He Z, Andres Hernando A, Jani A, Kedl R, Edelstein CL (2012) Depletion of macrophages and dendritic cells in ischemic acute kidney injury. Am J Nephrol 35:181–190CrossRefPubMedPubMedCentral
63.
go back to reference Jo SK, Sung SA, Cho WY, Go KJ, Kim HK (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21:1231–1239CrossRefPubMed Jo SK, Sung SA, Cho WY, Go KJ, Kim HK (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21:1231–1239CrossRefPubMed
64.
go back to reference Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30:199–209CrossRefPubMed Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30:199–209CrossRefPubMed
65.
66.
go back to reference Jose MD, Le Meur Y, Atkins RC, Chadban SJ (2003) Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant 3:294–300CrossRefPubMed Jose MD, Le Meur Y, Atkins RC, Chadban SJ (2003) Blockade of macrophage colony-stimulating factor reduces macrophage proliferation and accumulation in renal allograft rejection. Am J Transplant 3:294–300CrossRefPubMed
67.
go back to reference Sheerin NS, Risley P, Abe K, Tang Z, Wong W, Lin T, Sacks SH (2008) Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB J 22:1065–1072CrossRefPubMed Sheerin NS, Risley P, Abe K, Tang Z, Wong W, Lin T, Sacks SH (2008) Synthesis of complement protein C3 in the kidney is an important mediator of local tissue injury. FASEB J 22:1065–1072CrossRefPubMed
68.
go back to reference Brar JE, Quigg RJ (2014) Complement activation in the tubulointerstitium: AKI, CKD, and in between. Kidney Int 86:663–666CrossRefPubMed Brar JE, Quigg RJ (2014) Complement activation in the tubulointerstitium: AKI, CKD, and in between. Kidney Int 86:663–666CrossRefPubMed
70.
go back to reference Cernoch M, Viklicky O (2017) Complement in kidney transplantation. Front Med 4:1–11CrossRef Cernoch M, Viklicky O (2017) Complement in kidney transplantation. Front Med 4:1–11CrossRef
71.
go back to reference Abe K, Li K, Sacks SH, Sheerin NS (2004) The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin Exp Immunol 136:60–66CrossRefPubMedPubMedCentral Abe K, Li K, Sacks SH, Sheerin NS (2004) The membrane attack complex, C5b-9, up regulates collagen gene expression in renal tubular epithelial cells. Clin Exp Immunol 136:60–66CrossRefPubMedPubMedCentral
72.
go back to reference Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, Zhou W, Sacks SH (2016) Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest 126:1911–1925CrossRefPubMedPubMedCentral Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, Zhou W, Sacks SH (2016) Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest 126:1911–1925CrossRefPubMedPubMedCentral
73.
go back to reference Lee HT, Kim M, Kim M, Kim N, Billings FT 4th, D'Agati VD, Emala CW Sr (2007) Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol 293:F713–F722CrossRefPubMed Lee HT, Kim M, Kim M, Kim N, Billings FT 4th, D'Agati VD, Emala CW Sr (2007) Isoflurane protects against renal ischemia and reperfusion injury and modulates leukocyte infiltration in mice. Am J Physiol Renal Physiol 293:F713–F722CrossRefPubMed
74.
go back to reference Zhang ZX, Wang S, Huang X, Min WP, Sun H, Liu W, Garcia B, Jevnikar AM (2008) NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J Immunol 181:7489–7498CrossRefPubMed Zhang ZX, Wang S, Huang X, Min WP, Sun H, Liu W, Garcia B, Jevnikar AM (2008) NK cells induce apoptosis in tubular epithelial cells and contribute to renal ischemia-reperfusion injury. J Immunol 181:7489–7498CrossRefPubMed
75.
go back to reference Li L, Huang L, Sung SS, Lobo PI, Brown MG, Gregg RK, Engelhard VH, Okusa MD (2007) NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol 178:5899–5911CrossRefPubMed Li L, Huang L, Sung SS, Lobo PI, Brown MG, Gregg RK, Engelhard VH, Okusa MD (2007) NKT cell activation mediates neutrophil IFN-gamma production and renal ischemia-reperfusion injury. J Immunol 178:5899–5911CrossRefPubMed
76.
go back to reference Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628CrossRefPubMed Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD (2007) Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia-reperfusion injury. Kidney Int 71:619–628CrossRefPubMed
77.
go back to reference Loverre A, Capobianco C, Stallone G, Infante B, Schena A, Ditonno P, Palazzo S, Battaglia M, Crovace A, Castellano G, Ranieri E, Schena FP, Gesualdo L, Grandaliano G (2007) Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function. Kidney Int 72:994–1003CrossRefPubMed Loverre A, Capobianco C, Stallone G, Infante B, Schena A, Ditonno P, Palazzo S, Battaglia M, Crovace A, Castellano G, Ranieri E, Schena FP, Gesualdo L, Grandaliano G (2007) Ischemia-reperfusion injury-induced abnormal dendritic cell traffic in the transplanted kidney with delayed graft function. Kidney Int 72:994–1003CrossRefPubMed
78.
go back to reference Rabb H, Daniels F, O'Donnell M, Haq M, Saba SR, Keane W, Tang WW (2000) Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 279:F525–F531CrossRefPubMed Rabb H, Daniels F, O'Donnell M, Haq M, Saba SR, Keane W, Tang WW (2000) Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 279:F525–F531CrossRefPubMed
79.
go back to reference Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O'Donnell MP, Rabb H (2001) Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108:1283–1290CrossRefPubMedPubMedCentral Burne MJ, Daniels F, El Ghandour A, Mauiyyedi S, Colvin RB, O'Donnell MP, Rabb H (2001) Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108:1283–1290CrossRefPubMedPubMedCentral
80.
go back to reference Savransky V, Molls RR, Burne-Taney M, Chien CC, Racusen L, Rabb H (2006) Role of the T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int 69:233–238CrossRefPubMed Savransky V, Molls RR, Burne-Taney M, Chien CC, Racusen L, Rabb H (2006) Role of the T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int 69:233–238CrossRefPubMed
81.
go back to reference Monteiro RM, Camara NO, Rodrigues MM, Tzelepis F, Damiao MJ, Cenedeze MA, Teixeira Vde P, dos Reis MA, Pacheco-Silva A (2009) A role for regulatory T cells in renal acute kidney injury. Transpl Immunol 21:50–55CrossRefPubMed Monteiro RM, Camara NO, Rodrigues MM, Tzelepis F, Damiao MJ, Cenedeze MA, Teixeira Vde P, dos Reis MA, Pacheco-Silva A (2009) A role for regulatory T cells in renal acute kidney injury. Transpl Immunol 21:50–55CrossRefPubMed
83.
go back to reference Linfert D, Chowdhry T, Rabb H (2009) Lymphocytes and ischemia-reperfusion injury. Transplant Rev 23:1–10CrossRef Linfert D, Chowdhry T, Rabb H (2009) Lymphocytes and ischemia-reperfusion injury. Transplant Rev 23:1–10CrossRef
84.
go back to reference Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H (2003) B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 171:3210–3215CrossRefPubMed Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H (2003) B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 171:3210–3215CrossRefPubMed
85.
go back to reference Jang HR, Gandolfo MT, Ko GJ, Satpute SR, Racusen L, Rabb H (2010) B cells limit repair after ischemic acute kidney injury. J Am Soc Nephrol 21:654–665CrossRefPubMedPubMedCentral Jang HR, Gandolfo MT, Ko GJ, Satpute SR, Racusen L, Rabb H (2010) B cells limit repair after ischemic acute kidney injury. J Am Soc Nephrol 21:654–665CrossRefPubMedPubMedCentral
86.
go back to reference Renner B, Strassheim D, Amura CR, Kulik L, Ljubanovic D, Glogowska MJ, Takahashi K, Carroll MC, Holers VM, Thurman JM (2010) B cell subsets contribute to both renal injury and renal protection after ischemia/reperfusion. J Immunol 185:4393–4400CrossRefPubMed Renner B, Strassheim D, Amura CR, Kulik L, Ljubanovic D, Glogowska MJ, Takahashi K, Carroll MC, Holers VM, Thurman JM (2010) B cell subsets contribute to both renal injury and renal protection after ischemia/reperfusion. J Immunol 185:4393–4400CrossRefPubMed
87.
go back to reference Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, Yanagita M (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27:2393–2406CrossRefPubMed Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, Yanagita M (2016) Severity and frequency of proximal tubule injury determines renal prognosis. J Am Soc Nephrol 27:2393–2406CrossRefPubMed
88.
go back to reference Heyman SN, Rosenberger C, Rosen S (2010) Experimental ischemia–reperfusion: biases and myths—the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 77:9–16CrossRefPubMed Heyman SN, Rosenberger C, Rosen S (2010) Experimental ischemia–reperfusion: biases and myths—the proximal vs. distal hypoxic tubular injury debate revisited. Kidney Int 77:9–16CrossRefPubMed
89.
go back to reference Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol 18:490–497PubMed Sutton TA, Molitoris BA (1998) Mechanisms of cellular injury in ischemic acute renal failure. Semin Nephrol 18:490–497PubMed
90.
go back to reference Kapper S, Beck G, Riedel S, Prem K, Haak M, van der Woude FJ, Yard BA (2002) Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines. Transplantation 74:253–260CrossRefPubMed Kapper S, Beck G, Riedel S, Prem K, Haak M, van der Woude FJ, Yard BA (2002) Modulation of chemokine production and expression of adhesion molecules in renal tubular epithelial and endothelial cells by catecholamines. Transplantation 74:253–260CrossRefPubMed
91.
go back to reference Moll S, Ebeling M, Weibel F, Farina A, Rosario AAD, Hoflack JC, Pomposiello S, Prunotto M (2013) Epithelial cells as active player in fibrosis: findings from an in vitro model. PLoS One 8:e56575CrossRefPubMedPubMedCentral Moll S, Ebeling M, Weibel F, Farina A, Rosario AAD, Hoflack JC, Pomposiello S, Prunotto M (2013) Epithelial cells as active player in fibrosis: findings from an in vitro model. PLoS One 8:e56575CrossRefPubMedPubMedCentral
92.
go back to reference Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJD, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903CrossRefPubMedPubMedCentral Leemans JC, Stokman G, Claessen N, Rouschop KM, Teske GJD, Kirschning CJ, Akira S, van der Poll T, Weening JJ, Florquin S (2005) Renal-associated TLR2 mediates ischemia/reperfusion injury in the kidney. J Clin Invest 115:2894–2903CrossRefPubMedPubMedCentral
93.
go back to reference Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859CrossRefPubMedPubMedCentral Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ (2007) TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117:2847–2859CrossRefPubMedPubMedCentral
94.
go back to reference Pulskens WP, Teske GJ, Butter LM, Roelofs JJ, van der Poll T, Florquin S, Leemans JC (2008) Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One 3:e3596CrossRefPubMedPubMedCentral Pulskens WP, Teske GJ, Butter LM, Roelofs JJ, van der Poll T, Florquin S, Leemans JC (2008) Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS One 3:e3596CrossRefPubMedPubMedCentral
95.
go back to reference Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA (2012) PTEN loss defines a TGF-beta-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 302:F1210–F1223CrossRefPubMedPubMedCentral Lan R, Geng H, Polichnowski AJ, Singha PK, Saikumar P, McEwen DG, Griffin KA, Koesters R, Weinberg JM, Bidani AK, Kriz W, Venkatachalam MA (2012) PTEN loss defines a TGF-beta-induced tubule phenotype of failed differentiation and JNK signaling during renal fibrosis. Am J Physiol Renal Physiol 302:F1210–F1223CrossRefPubMedPubMedCentral
96.
go back to reference Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776CrossRefPubMedPubMedCentral Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776CrossRefPubMedPubMedCentral
97.
go back to reference Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17CrossRefPubMed Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17CrossRefPubMed
98.
go back to reference Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543CrossRefPubMedPubMedCentral Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543CrossRefPubMedPubMedCentral
99.
go back to reference Suzuki T, Kimura M, Asano M, Fujigaki Y, Hishida A (2001) Role of atrophic tubules in development of interstitial fibrosis in microembolism-induced renal failure in rat. Am J Pathol 158:75–85CrossRefPubMedPubMedCentral Suzuki T, Kimura M, Asano M, Fujigaki Y, Hishida A (2001) Role of atrophic tubules in development of interstitial fibrosis in microembolism-induced renal failure in rat. Am J Pathol 158:75–85CrossRefPubMedPubMedCentral
100.
go back to reference Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583CrossRefPubMed Canaud G, Bonventre JV (2015) Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 30:575–583CrossRefPubMed
101.
go back to reference Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25CrossRefPubMedPubMedCentral Kashani K, Al-Khafaji A, Ardiles T, Artigas A, Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, Shaw AD, Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17:R25CrossRefPubMedPubMedCentral
102.
go back to reference Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J, Gauvin D, Hou X, Kramann R, Humphreys BD (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol 27:781–790CrossRefPubMed Maarouf OH, Aravamudhan A, Rangarajan D, Kusaba T, Zhang V, Welborn J, Gauvin D, Hou X, Kramann R, Humphreys BD (2016) Paracrine Wnt1 drives interstitial fibrosis without inflammation by tubulointerstitial cross-talk. J Am Soc Nephrol 27:781–790CrossRefPubMed
103.
go back to reference Nangaku M, Hirakawa Y, Mimura I, Inagi R, Tanaka T (2017) Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition. Nephron 137:256–269CrossRefPubMed Nangaku M, Hirakawa Y, Mimura I, Inagi R, Tanaka T (2017) Epigenetic changes in the acute kidney injury-to-chronic kidney disease transition. Nephron 137:256–269CrossRefPubMed
104.
go back to reference Rodriguez-Romo R, Berman N, Gomez A, Bobadilla NA (2015) Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton) 20:736–743CrossRef Rodriguez-Romo R, Berman N, Gomez A, Bobadilla NA (2015) Epigenetic regulation in the acute kidney injury (AKI) to chronic kidney disease transition (CKD). Nephrology (Carlton) 20:736–743CrossRef
105.
go back to reference Mimura I, Tanaka T, Nangaku M (2016) New insights into molecular mechanisms of epigenetic regulation in kidney disease. Clin Exp Pharm Physiol 43:1159–1167CrossRef Mimura I, Tanaka T, Nangaku M (2016) New insights into molecular mechanisms of epigenetic regulation in kidney disease. Clin Exp Pharm Physiol 43:1159–1167CrossRef
106.
go back to reference Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550CrossRefPubMedPubMedCentral Bechtel W, McGoohan S, Zeisberg EM, Muller GA, Kalbacher H, Salant DJ, Muller CA, Kalluri R, Zeisberg M (2010) Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat Med 16:544–550CrossRefPubMedPubMedCentral
107.
go back to reference Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-Beta and EGFR signaling. PLoS One 8:e54001CrossRefPubMedPubMedCentral Liu N, He S, Ma L, Ponnusamy M, Tang J, Tolbert E, Bayliss G, Zhao TC, Yan H, Zhuang S (2013) Blocking the class I histone deacetylase ameliorates renal fibrosis and inhibits renal fibroblast activation via modulating TGF-Beta and EGFR signaling. PLoS One 8:e54001CrossRefPubMedPubMedCentral
108.
go back to reference Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS (2013) Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 33:363–374CrossRefPubMed Wing MR, Ramezani A, Gill HS, Devaney JM, Raj DS (2013) Epigenetics of progression of chronic kidney disease: fact or fantasy? Semin Nephrol 33:363–374CrossRefPubMed
110.
go back to reference McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874CrossRefPubMedPubMedCentral McDonald OG, Wu H, Timp W, Doi A, Feinberg AP (2011) Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol 18:867–874CrossRefPubMedPubMedCentral
111.
go back to reference Li Y-F, Jing Y, Hao J, Frankfort NC, Zhou X, Shen B, Liu X, Wang L, Li R (2013) MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell 4:813–819CrossRefPubMedPubMedCentral Li Y-F, Jing Y, Hao J, Frankfort NC, Zhou X, Shen B, Liu X, Wang L, Li R (2013) MicroRNA-21 in the pathogenesis of acute kidney injury. Protein Cell 4:813–819CrossRefPubMedPubMedCentral
112.
go back to reference van den Akker EK, Dor FJ, IJzermans JN, de Bruin RW (2015) MicroRNAs in kidney transplantation: living up to their expectations? J Transp Secur 2015:354826 van den Akker EK, Dor FJ, IJzermans JN, de Bruin RW (2015) MicroRNAs in kidney transplantation: living up to their expectations? J Transp Secur 2015:354826
113.
go back to reference Aguado-Fraile E, Ramos E, Sáenz-Morales D, Conde E, Blanco-Sánchez I, Stamatakis K, Peso LD, Cuppen E, Brune B, Laura M, Bermejo G (2012) miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One 7:e44305CrossRefPubMedPubMedCentral Aguado-Fraile E, Ramos E, Sáenz-Morales D, Conde E, Blanco-Sánchez I, Stamatakis K, Peso LD, Cuppen E, Brune B, Laura M, Bermejo G (2012) miR-127 protects proximal tubule cells against ischemia/reperfusion: identification of kinesin family member 3B as miR-127 target. PLoS One 7:e44305CrossRefPubMedPubMedCentral
Metadata
Title
Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction
Authors
Gerhard R. Situmorang
Neil S. Sheerin
Publication date
01-06-2019
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 6/2019
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-018-3940-4

Other articles of this Issue 6/2019

Pediatric Nephrology 6/2019 Go to the issue