Skip to main content
Top
Published in: Pediatric Nephrology 9/2013

Open Access 01-09-2013 | Original Article

Urine NGAL and KIM-1 in children and adolescents with hyperuricemia

Authors: Justyna Tomczak, Anna Wasilewska, Robert Milewski

Published in: Pediatric Nephrology | Issue 9/2013

Login to get access

Abstract

Background

The aim of this study was to test the hypothesis that urine levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1) are enhanced in pediatric patients with hyperuricemia.

Methods

The study included 88 children and adolescents (60 males, 28 females) with a median age of 16 (range 11–18.5) years who had been referred to our department to rule out or confirm hypertension. The subjects were divided into two groups: the hyperuricemic (HU) group comprising 59 subjects with hyperuricemia (defined as serum uric acid >4.8 and >5.5 mg/dl in girls and boys, respectively) and the reference group comprising 29 patients with normouricemia. Urine NGAL and KIM-1 levels were evaluated using a commercially available kit.

Results

Concentrations of the examined biomarkers [urine NGAL, NGAL/creatinine (cr.) ratio, urine KIM-1, KIM-1/cr. ratio] were increased in the HU group compared with the reference group (p < 0.01). There were positive correlations between the serum uric acid and urine NGAL/cr. ratio (R = 0.67, p < 0.001) and the urine KIM-1/cr. ratio (R = 0.36, p < 0.001). In the multiple regression models, serum uric acid, systolic blood pressure and cholesterol accounted for more than 49 % of the variation in the NGAL/cr. ratio (R = 0.702, p < 0.001). In the second model, serum uric acid, gender, age and systolic blood pressure accounted for more than 36 % of the variation in the KIM-1/cr. ratio (R = 0.604, p < 0.001).

Conclusion

We demonstrated that male, obese, hypertensive adolescents with hyperuricemia have higher urine NGAL and KIM-1 levels relative to a reference group with normouricemia.
Literature
1.
go back to reference Feig DI (2009) Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens 18:526–530PubMedCrossRef Feig DI (2009) Uric acid: a novel mediator and marker of risk in chronic kidney disease? Curr Opin Nephrol Hypertens 18:526–530PubMedCrossRef
2.
go back to reference Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ (2002) Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 282:F991–F997PubMed Mazzali M, Kanellis J, Han L, Feng L, Xia YY, Chen Q, Kang DH, Gordon KL, Watanabe S, Nakagawa T, Lan HY, Johnson RJ (2002) Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol 282:F991–F997PubMed
3.
go back to reference Sánchez-Lozada LG, Tapia E, Santamaría J, Avila-Casado C, Soto V, Nepomuceno T, Rodríguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247PubMedCrossRef Sánchez-Lozada LG, Tapia E, Santamaría J, Avila-Casado C, Soto V, Nepomuceno T, Rodríguez-Iturbe B, Johnson RJ, Herrera-Acosta J (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67:237–247PubMedCrossRef
4.
go back to reference Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23:2–7PubMedCrossRef Nakagawa T, Mazzali M, Kang DH, Kanellis J, Watanabe S, Sanchez-Lozada LG, Rodriguez-Iturbe B, Herrera-Acosta J, Johnson RJ (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23:2–7PubMedCrossRef
5.
go back to reference Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, Johnson RJ, Kang DH (2013) Uric acid- induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304:F471–F480PubMedCrossRef Ryu ES, Kim MJ, Shin HS, Jang YH, Choi HS, Jo I, Johnson RJ, Kang DH (2013) Uric acid- induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol 304:F471–F480PubMedCrossRef
7.
go back to reference Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821PubMedCrossRef Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821PubMedCrossRef
8.
go back to reference Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R, Covic A (2007) Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol 39:1227–1233PubMedCrossRef Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, Uz E, Akcay A, Yigitoglu R, Covic A (2007) Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol 39:1227–1233PubMedCrossRef
9.
go back to reference Siu YP, Leung KT, Tong MK, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59PubMedCrossRef Siu YP, Leung KT, Tong MK, Kwan TH (2006) Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis 47:51–59PubMedCrossRef
10.
go back to reference Bagshaw SM, Bellomo R (2007) Early diagnosis of acute kidney injury. Curr Opin Crit Care 13:638–644PubMedCrossRef Bagshaw SM, Bellomo R (2007) Early diagnosis of acute kidney injury. Curr Opin Crit Care 13:638–644PubMedCrossRef
11.
go back to reference Venge P, Carlson M, Fredens K, Garcia R (1999) The 40 kD-protein. A new protein isolated from the secondary granules of human neutrophils: Joint International Conference on Leukocyte Biology. J Leukocyte Biol 1:28 Venge P, Carlson M, Fredens K, Garcia R (1999) The 40 kD-protein. A new protein isolated from the secondary granules of human neutrophils: Joint International Conference on Leukocyte Biology. J Leukocyte Biol 1:28
12.
go back to reference Allen RA, Erickson RW, Jesaitis AJ (1989) Identification of a human neutrophil protein of Mr 24 000 that binds N-formyl peptides: co-sedimentation with specific granules. Biochim Biophys Acta 991:123–133PubMedCrossRef Allen RA, Erickson RW, Jesaitis AJ (1989) Identification of a human neutrophil protein of Mr 24 000 that binds N-formyl peptides: co-sedimentation with specific granules. Biochim Biophys Acta 991:123–133PubMedCrossRef
13.
go back to reference Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142PubMedCrossRef Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M (1998) Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 273:4135–4142PubMedCrossRef
14.
go back to reference Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244PubMedCrossRef Han WK, Bailly V, Abichandani R, Thadhani R, Bonventre JV (2002) Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int 62:237–244PubMedCrossRef
15.
go back to reference Cherian S, Crompton CH (2005) Partial hypoxanthine-guanine phosphoribosyltransferase deficiency presenting as acute renal failure. Pediatr Nephrol 20:1811–1813PubMedCrossRef Cherian S, Crompton CH (2005) Partial hypoxanthine-guanine phosphoribosyltransferase deficiency presenting as acute renal failure. Pediatr Nephrol 20:1811–1813PubMedCrossRef
16.
go back to reference Lock EA (2010) Sensitive and early markers of renal injury: where are we and what is the way forward? Toxicol Sci 116:1–4PubMedCrossRef Lock EA (2010) Sensitive and early markers of renal injury: where are we and what is the way forward? Toxicol Sci 116:1–4PubMedCrossRef
17.
go back to reference Feig DI, Johnson RJ (2003) Hyperuricemia in childhood primary hypertension. Hypertension 42:247–252PubMedCrossRef Feig DI, Johnson RJ (2003) Hyperuricemia in childhood primary hypertension. Hypertension 42:247–252PubMedCrossRef
18.
go back to reference Xu PC, Zhang JJ, Chen M, Lv JC, Liu G, Zou WZ, Zhang H, Zhao MH (2011) Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant 26:3229–3236PubMedCrossRef Xu PC, Zhang JJ, Chen M, Lv JC, Liu G, Zou WZ, Zhang H, Zhao MH (2011) Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant 26:3229–3236PubMedCrossRef
19.
go back to reference Yang YH, He XJ, Chen SR, Wang L, Li EM, Xu LY (2009) Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine 36:45–51PubMedCrossRef Yang YH, He XJ, Chen SR, Wang L, Li EM, Xu LY (2009) Changes of serum and urine neutrophil gelatinase-associated lipocalin in type-2 diabetic patients with nephropathy: one year observational follow-up study. Endocrine 36:45–51PubMedCrossRef
20.
go back to reference Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, Frisina N, Buemi M (2007) Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am J Nephrol 27:373–378PubMed Bolignano D, Coppolino G, Campo S, Aloisi C, Nicocia G, Frisina N, Buemi M (2007) Neutrophil gelatinase-associated lipocalin in patients with autosomal-dominant polycystic kidney disease. Am J Nephrol 27:373–378PubMed
21.
go back to reference Miatello R, Vázquez M, Renna N, Cruzado M, Zumino AP, Risler N (2005) Chronic administration of resveratrol prevents biochemical cardiovascula changes in fructose-fed rats. Am J Hypertens 18:864–870PubMedCrossRef Miatello R, Vázquez M, Renna N, Cruzado M, Zumino AP, Risler N (2005) Chronic administration of resveratrol prevents biochemical cardiovascula changes in fructose-fed rats. Am J Hypertens 18:864–870PubMedCrossRef
22.
go back to reference Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631PubMedCrossRef Nakagawa T, Hu H, Zharikov S, Tuttle KR, Short RA, Glushakova O, Ouyang X, Feig DI, Block ER, Herrera-Acosta J, Patel JM, Johnson RJ (2006) A causal role for uric acid in fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 290:F625–F631PubMedCrossRef
23.
go back to reference Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Austin YY, Johnson RJ, Nakagawa T (2007) Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 293:F1256–F1261PubMedCrossRef Gersch MS, Mu W, Cirillo P, Reungjui S, Zhang L, Roncal C, Austin YY, Johnson RJ, Nakagawa T (2007) Fructose, but not dextrose, accelerates the progression of chronic kidney disease. Am J Physiol Renal Physiol 293:F1256–F1261PubMedCrossRef
24.
go back to reference Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson RJ (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13:2888–2897PubMedCrossRef Kang DH, Nakagawa T, Feng L, Watanabe S, Han L, Mazzali M, Truong L, Harris R, Johnson RJ (2002) A role for uric acid in the progression of renal disease. J Am Soc Nephrol 13:2888–2897PubMedCrossRef
25.
go back to reference Hu QH, Wang C, Li JM, Zhang DM, Kong LD (2009) Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol 297:F1080–F1091PubMedCrossRef Hu QH, Wang C, Li JM, Zhang DM, Kong LD (2009) Allopurinol, rutin, and quercetin attenuate hyperuricemia and renal dysfunction in rats induced by fructose intake: renal organic ion transporter involvement. Am J Physiol Renal Physiol 297:F1080–F1091PubMedCrossRef
26.
go back to reference Le MT, Shafiu M, Mu W, Johnson RJ (2008) SLC2A9-A fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant 23:2746–2749PubMedCrossRef Le MT, Shafiu M, Mu W, Johnson RJ (2008) SLC2A9-A fructose transporter identified as a novel uric acid transporter. Nephrol Dial Transplant 23:2746–2749PubMedCrossRef
27.
go back to reference Matsuzaki T, Watanabe H, Yoshitome K, Morisaki T, Hamada A, Nonoguchi H, Kohda Y, Tomita K, Inui K, Saito H (2008) Altered pharmacokinetics of cationic drugs caused by down-regulation of renal rat organic cation transporter 2 (Slc22a2) and rat multidrug and toxin extrusion 1 (Slc47a1) in ischemia/reperfusion-induced acute kidney injury. Drug Metab Dispos 36:649–654PubMedCrossRef Matsuzaki T, Watanabe H, Yoshitome K, Morisaki T, Hamada A, Nonoguchi H, Kohda Y, Tomita K, Inui K, Saito H (2008) Altered pharmacokinetics of cationic drugs caused by down-regulation of renal rat organic cation transporter 2 (Slc22a2) and rat multidrug and toxin extrusion 1 (Slc47a1) in ischemia/reperfusion-induced acute kidney injury. Drug Metab Dispos 36:649–654PubMedCrossRef
28.
go back to reference Habu Y, Yano I, Okuda M, Fukatsu A, Inui K (2005) Restored expression and activity of organic ion transporters rOAT1, rOAT3 and rOCT2 after hyperuricemia in the rat kidney. Biochem Pharmacol 69:993–999PubMedCrossRef Habu Y, Yano I, Okuda M, Fukatsu A, Inui K (2005) Restored expression and activity of organic ion transporters rOAT1, rOAT3 and rOCT2 after hyperuricemia in the rat kidney. Biochem Pharmacol 69:993–999PubMedCrossRef
29.
go back to reference Grover B, Buckley D, Buckley AR, Cacini W (2004) Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther 308:949–956PubMedCrossRef Grover B, Buckley D, Buckley AR, Cacini W (2004) Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther 308:949–956PubMedCrossRef
30.
go back to reference Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470PubMedCrossRef Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24:450–470PubMedCrossRef
31.
go back to reference Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML (2008) Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26:269–275PubMedCrossRef Corry DB, Eslami P, Yamamoto K, Nyby MD, Makino H, Tuck ML (2008) Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system. J Hypertens 26:269–275PubMedCrossRef
32.
go back to reference Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH (2010) Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 28:1234–1242PubMed Yu MA, Sánchez-Lozada LG, Johnson RJ, Kang DH (2010) Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J Hypertens 28:1234–1242PubMed
33.
go back to reference Han HJ, Lim MJ, Lee YJ, Lee JH, Yang IS, Taub M (2007) Uric acid inhibits renal proximal tubule cell proliferation via at least two signaling pathways involving PKC, MAPK, cPLA2, and NF-kappaB. Am J Physiol Renal Physiol 292:F373–F381PubMedCrossRef Han HJ, Lim MJ, Lee YJ, Lee JH, Yang IS, Taub M (2007) Uric acid inhibits renal proximal tubule cell proliferation via at least two signaling pathways involving PKC, MAPK, cPLA2, and NF-kappaB. Am J Physiol Renal Physiol 292:F373–F381PubMedCrossRef
34.
go back to reference Quan H, Peng X, Liu S, Bo F, Yang L, Huang Z, Li H, Chen X, Di W (2011) Differentially expressed protein profile of renal tubule cell stimulated by elevated uric acid using SILAC coupled to LC-MS. Cell Physiol Biochem 27:91–98PubMed Quan H, Peng X, Liu S, Bo F, Yang L, Huang Z, Li H, Chen X, Di W (2011) Differentially expressed protein profile of renal tubule cell stimulated by elevated uric acid using SILAC coupled to LC-MS. Cell Physiol Biochem 27:91–98PubMed
35.
go back to reference Ding H, He Y, Li K, Yang J, Li X, Lu R, Gao W (2007) Urinary neutrophil gelatinase- associated lipocalin (NGAL)) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol 123:227–234PubMedCrossRef Ding H, He Y, Li K, Yang J, Li X, Lu R, Gao W (2007) Urinary neutrophil gelatinase- associated lipocalin (NGAL)) is an early biomarker for renal tubulointerstitial injury in IgA nephropathy. Clin Immunol 123:227–234PubMedCrossRef
36.
go back to reference Brunner HI, Mueller M, Rutherford C, Passo MH, Witte D, Grom A, Mishra J, Devarajan P (2006) Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. Arthritis Rheum 54:2577–2584PubMedCrossRef Brunner HI, Mueller M, Rutherford C, Passo MH, Witte D, Grom A, Mishra J, Devarajan P (2006) Urinary neutrophil gelatinase-associated lipocalin as a biomarker of nephritis in childhood-onset systemic lupus erythematosus. Arthritis Rheum 54:2577–2584PubMedCrossRef
37.
go back to reference Wasilewska A, Taranta-Janusz K, Dębek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E (2011) KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 26:579–586PubMedCrossRef Wasilewska A, Taranta-Janusz K, Dębek W, Zoch-Zwierz W, Kuroczycka-Saniutycz E (2011) KIM-1 and NGAL: new markers of obstructive nephropathy. Pediatr Nephrol 26:579–586PubMedCrossRef
38.
go back to reference Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286:F552–F563PubMedCrossRef Ichimura T, Hung CC, Yang SA, Stevens JL, Bonventre JV (2004) Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol 286:F552–F563PubMedCrossRef
39.
go back to reference Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–F1336PubMed Kuehn EW, Park KM, Somlo S, Bonventre JV (2002) Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 283:F1326–F1336PubMed
40.
go back to reference Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R, Bonventre JV (2005) Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 16:1126–1134PubMedCrossRef Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R, Bonventre JV (2005) Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 16:1126–1134PubMedCrossRef
41.
go back to reference Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290:F517–F529PubMedCrossRef Vaidya VS, Ramirez V, Ichimura T, Bobadilla NA, Bonventre JV (2006) Urinary kidney injury molecule-1: a sensitive quantitative biomarker for early detection of kidney tubular injury. Am J Physiol Renal Physiol 290:F517–F529PubMedCrossRef
42.
go back to reference Nepal M, Bock GH, Sehic AM, Schultz MF, Zhang PL (2008) Kidney injury molecule-1 expression identifies proximal tubular injury in urate nephropathy. Ann Clin Lab Sci 38:210–214PubMed Nepal M, Bock GH, Sehic AM, Schultz MF, Zhang PL (2008) Kidney injury molecule-1 expression identifies proximal tubular injury in urate nephropathy. Ann Clin Lab Sci 38:210–214PubMed
43.
go back to reference Eirin A, Gloviczki ML, Tang H, Rule AD, Woollard JR, Lerman A, Textor SC, Lerman LO (2012) Chronic renovascular hypertension is associated with elevated levels of neutrophil gelatinase-associated lipocalin. Nephrol Dial Transplant 27:4153–4161PubMedCrossRef Eirin A, Gloviczki ML, Tang H, Rule AD, Woollard JR, Lerman A, Textor SC, Lerman LO (2012) Chronic renovascular hypertension is associated with elevated levels of neutrophil gelatinase-associated lipocalin. Nephrol Dial Transplant 27:4153–4161PubMedCrossRef
44.
go back to reference Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A, Zaniew M, Zachwieja J (2012) Hypertensive nephropathy in children—do we diagnose early enough? Blood Press 21:233–239PubMedCrossRef Blumczynski A, Sołtysiak J, Lipkowska K, Silska M, Poprawska A, Musielak A, Zaniew M, Zachwieja J (2012) Hypertensive nephropathy in children—do we diagnose early enough? Blood Press 21:233–239PubMedCrossRef
45.
go back to reference Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thorén P, Hansson GK (2006) Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol 26:136–142PubMedCrossRef Hemdahl AL, Gabrielsen A, Zhu C, Eriksson P, Hedin U, Kastrup J, Thorén P, Hansson GK (2006) Expression of neutrophil gelatinase-associated lipocalin in atherosclerosis and myocardial infarction. Arterioscler Thromb Vasc Biol 26:136–142PubMedCrossRef
Metadata
Title
Urine NGAL and KIM-1 in children and adolescents with hyperuricemia
Authors
Justyna Tomczak
Anna Wasilewska
Robert Milewski
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2013
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-013-2491-y

Other articles of this Issue 9/2013

Pediatric Nephrology 9/2013 Go to the issue