Skip to main content
Top
Published in: Pediatric Nephrology 9/2013

01-09-2013 | Review

Angiogenesis and autosomal dominant polycystic kidney disease

Authors: Jennifer L. Huang, Adrian S. Woolf, David A. Long

Published in: Pediatric Nephrology | Issue 9/2013

Login to get access

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the growth of multiple cysts that in many cases result in end-stage renal disease. Current strategies to reduce cyst progression in ADPKD focus on modulating cell turnover, fluid secretion, and vasopressin signalling; but an alternative approach may be to target pathways providing “general support” for cyst growth, such as surrounding blood vessels. This could be achieved by altering the expression of growth factors involved in vascular network formation, such as the vascular endothelial growth factor (VEGF) and angiopoietin families. We highlight the evidence that blood vessels and vascular growth factors play a role in ADPKD progression. Recent experiments manipulating VEGF in ADPKD are described, and we discuss how alternative strategies to manipulate angiogenesis may be used in the future as a novel treatment for ADPKD.
Literature
2.
go back to reference Mekahli D, Woolf AS, Bockenhauer D (2010) Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatr Nephrol 25:2275–2282PubMedCrossRef Mekahli D, Woolf AS, Bockenhauer D (2010) Similar renal outcomes in children with ADPKD diagnosed by screening or presenting with symptoms. Pediatr Nephrol 25:2275–2282PubMedCrossRef
4.
go back to reference Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3’,5-cyclic monophosphate. Gastroenterology 132:1104–1116PubMedCrossRef Masyuk TV, Masyuk AI, Torres VE, Harris PC, Larusso NF (2007) Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3’,5-cyclic monophosphate. Gastroenterology 132:1104–1116PubMedCrossRef
5.
go back to reference Gattone VH, Wang X, Harris PC, Torres VC (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326PubMedCrossRef Gattone VH, Wang X, Harris PC, Torres VC (2003) Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med 9:1323–1326PubMedCrossRef
6.
go back to reference Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471PubMedCrossRef Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N, Flask CA, Novick AC, Goldfarb DA, Kramer-Zucker A, Walz G, Piontek KB, Germino GG, Weimbs T (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci U S A 103:5466–5471PubMedCrossRef
7.
go back to reference Chang MY, Ong AC (2012) Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 120:c25–c34PubMedCrossRef Chang MY, Ong AC (2012) Mechanism-based therapeutics for autosomal dominant polycystic kidney disease: recent progress and future prospects. Nephron Clin Pract 120:c25–c34PubMedCrossRef
8.
go back to reference Nguyen AN, Wallace DP, Blanco G (2007) Ouabain binds with high affinity to the Na, K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and proliferation. J Am Soc Nephrol 18:46–57PubMedCrossRef Nguyen AN, Wallace DP, Blanco G (2007) Ouabain binds with high affinity to the Na, K-ATPase in human polycystic kidney cells and induces extracellular signal-regulated kinase activation and proliferation. J Am Soc Nephrol 18:46–57PubMedCrossRef
9.
go back to reference Bello-Reuss E, Holubec K, Rajaraman S (2001) Angiogenesis in autosomal dominant polycystic kidney disease. Kidney Int 60:37–45PubMedCrossRef Bello-Reuss E, Holubec K, Rajaraman S (2001) Angiogenesis in autosomal dominant polycystic kidney disease. Kidney Int 60:37–45PubMedCrossRef
10.
go back to reference Wei W, Popov V, Walocha JA, Wen J, Bello-Reuss E (2006) Evidence of angiogenesis and microvascular regression in autosomal-dominant polycystic kidney disease kidneys: a corrosion case study. Kidney Int 70:1261–1268PubMedCrossRef Wei W, Popov V, Walocha JA, Wen J, Bello-Reuss E (2006) Evidence of angiogenesis and microvascular regression in autosomal-dominant polycystic kidney disease kidneys: a corrosion case study. Kidney Int 70:1261–1268PubMedCrossRef
11.
go back to reference Long DA, Norman JT, Fine LG (2012) Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 9:244–250CrossRef Long DA, Norman JT, Fine LG (2012) Restoring the renal microvasculature to treat chronic kidney disease. Nat Rev Nephrol 9:244–250CrossRef
12.
go back to reference Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA (2000) Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci U S A 97:1731–1736PubMedCrossRef Kim K, Drummond I, Ibraghimov-Beskrovnaya O, Klinger K, Arnaout MA (2000) Polycystin 1 is required for the structural integrity of blood vessels. Proc Natl Acad Sci U S A 97:1731–1736PubMedCrossRef
13.
go back to reference Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154:1721–1729PubMedCrossRef Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC (1999) Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. Am J Pathol 154:1721–1729PubMedCrossRef
14.
go back to reference Torres VE, Cai Y, Chen X, Wu GQ, Geng L, Cleghorn KA, Johnson CM, Somlo S (2001) Vascular expression of polycystin-2. J Am Soc Nephrol 12:1–9PubMed Torres VE, Cai Y, Chen X, Wu GQ, Geng L, Cleghorn KA, Johnson CM, Somlo S (2001) Vascular expression of polycystin-2. J Am Soc Nephrol 12:1–9PubMed
15.
go back to reference Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171PubMedCrossRef Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J (2008) Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 117:1161–1171PubMedCrossRef
16.
go back to reference AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signalling cascades. Circ Res 104:860–869PubMedCrossRef AbouAlaiwi WA, Takahashi M, Mell BR, Jones TJ, Ratnam S, Kolb RJ, Nauli SM (2009) Ciliary polycystin-2 is a mechanosensitive calcium channel involved in nitric oxide signalling cascades. Circ Res 104:860–869PubMedCrossRef
17.
go back to reference Hassane S, Claij N, Jodar M, Dedman A, Lauritzen I, Duprat F, Koendermann JS, van der Wal A, Breuning MH, de Heer E, Honore E, DeRuiter MC, Peters DJ (2011) Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Lab Investig 91:24–32PubMedCrossRef Hassane S, Claij N, Jodar M, Dedman A, Lauritzen I, Duprat F, Koendermann JS, van der Wal A, Breuning MH, de Heer E, Honore E, DeRuiter MC, Peters DJ (2011) Pkd1-inactivation in vascular smooth muscle cells and adaptation to hypertension. Lab Investig 91:24–32PubMedCrossRef
18.
go back to reference Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphiangiogenesis. Curr Opin Cell Biol 21:154–165PubMedCrossRef Lohela M, Bry M, Tammela T, Alitalo K (2009) VEGFs and receptors involved in angiogenesis versus lymphiangiogenesis. Curr Opin Cell Biol 21:154–165PubMedCrossRef
19.
go back to reference Woolf AS, Gnudi L, Long DA (2009) Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol 20:239–244PubMedCrossRef Woolf AS, Gnudi L, Long DA (2009) Roles of angiopoietins in kidney development and disease. J Am Soc Nephrol 20:239–244PubMedCrossRef
20.
go back to reference Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21:687–690PubMedCrossRef Ferrara N (2010) Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol Biol Cell 21:687–690PubMedCrossRef
21.
go back to reference Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887PubMedCrossRef Harper SJ, Bates DO (2008) VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer 8:880–887PubMedCrossRef
22.
go back to reference Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131PubMedCrossRef Kim KT, Choi HH, Steinmetz MO, Maco B, Kammerer RA, Ahn SY, Kim HZ, Lee GM, Koh GY (2005) Oligomerization and multimerization are critical for angiopoietin-1 to bind and phosphorylate Tie2. J Biol Chem 280:20126–20131PubMedCrossRef
23.
go back to reference Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulous N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRef Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulous N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60PubMedCrossRef
24.
go back to reference Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, Wieland T, Klein C, Thomas M, Uemura A, Goerdt S, Augustin HG (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122:1991–2005PubMedCrossRef Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, Wieland T, Klein C, Thomas M, Uemura A, Goerdt S, Augustin HG (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. J Clin Invest 122:1991–2005PubMedCrossRef
25.
go back to reference Stringer KD, Komers R, Osman SA, Oyama TT, Lindsley JN, Anderson S (2005) Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int 68:1729–1739PubMedCrossRef Stringer KD, Komers R, Osman SA, Oyama TT, Lindsley JN, Anderson S (2005) Gender hormones and the progression of experimental polycystic kidney disease. Kidney Int 68:1729–1739PubMedCrossRef
26.
go back to reference Brown JH, Bihoreau MT, Hoffmann S, Kranzlin B, Tychinskaya I, Obermuller N, Podlich D, Boehn SN, Kaisaki PJ, Megel N, Danoy P, Copley RR, Broxholme J, Witzgall R, Lathrop M, Gretz N, Gauguier D (2005) Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol 16:3517–3526PubMedCrossRef Brown JH, Bihoreau MT, Hoffmann S, Kranzlin B, Tychinskaya I, Obermuller N, Podlich D, Boehn SN, Kaisaki PJ, Megel N, Danoy P, Copley RR, Broxholme J, Witzgall R, Lathrop M, Gretz N, Gauguier D (2005) Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. J Am Soc Nephrol 16:3517–3526PubMedCrossRef
27.
go back to reference Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343PubMedCrossRef Song X, Di Giovanni V, He N, Wang K, Ingram A, Rosenblum ND, Pei Y (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343PubMedCrossRef
28.
go back to reference Tao Y, Kim J, Yin Y, Zafar I, Falk S, He Z, Faubel S, Schrier RW, Edelsterin CL (2007) VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int 72:1358–1366PubMedCrossRef Tao Y, Kim J, Yin Y, Zafar I, Falk S, He Z, Faubel S, Schrier RW, Edelsterin CL (2007) VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int 72:1358–1366PubMedCrossRef
29.
go back to reference Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613PubMed Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16:4604–4613PubMed
30.
go back to reference Bernhardt WM, Wiesener MS, Weidmann A, Schmitt R, Weichert W, Lechler P, Campean V, Ong AC, Willam C, Gretz N, Eckardt KU (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 170:830–842PubMedCrossRef Bernhardt WM, Wiesener MS, Weidmann A, Schmitt R, Weichert W, Lechler P, Campean V, Ong AC, Willam C, Gretz N, Eckardt KU (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 170:830–842PubMedCrossRef
31.
go back to reference Esteban MA, Harten SK, Tran MG, Maxwell PH (2006) Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 17:1801–1806PubMedCrossRef Esteban MA, Harten SK, Tran MG, Maxwell PH (2006) Formation of primary cilia in the renal epithelium is regulated by the von Hippel-Lindau tumor suppressor protein. J Am Soc Nephrol 17:1801–1806PubMedCrossRef
32.
go back to reference Rankin EB, Tomaszewski JE, Haase VH (2006) Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66:2576–2583PubMedCrossRef Rankin EB, Tomaszewski JE, Haase VH (2006) Renal cyst development in mice with conditional inactivation of the von Hippel-Lindau tumor suppressor. Cancer Res 66:2576–2583PubMedCrossRef
33.
go back to reference Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ (2011) Generation of a mouse model of von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. Cancer Res 71:6848–6856PubMedCrossRef Fu L, Wang G, Shevchuk MM, Nanus DM, Gudas LJ (2011) Generation of a mouse model of von Hippel-Lindau kidney disease leading to renal cancers by expression of a constitutively active mutant of HIF1α. Cancer Res 71:6848–6856PubMedCrossRef
34.
go back to reference Schietke RE, Hackenbeck T, Tran M, Günther R, Klanke B, Warnecke CL, Knaup KX, Shukla D, Rosenberger C, Koesters R, Bachmann S, Betz P, Schley G, Schödel J, Willam C, Winkler T, Amann K, Eckardt KU, Maxwell P, Wiesener MS (2012) Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts. PLoS One 7:e31034PubMedCrossRef Schietke RE, Hackenbeck T, Tran M, Günther R, Klanke B, Warnecke CL, Knaup KX, Shukla D, Rosenberger C, Koesters R, Bachmann S, Betz P, Schley G, Schödel J, Willam C, Winkler T, Amann K, Eckardt KU, Maxwell P, Wiesener MS (2012) Renal tubular HIF-2α expression requires VHL inactivation and causes fibrosis and cysts. PLoS One 7:e31034PubMedCrossRef
35.
go back to reference Madsen K, Marcussen N, Pedersen M, Kjaersgaard G, Facemire C, Coffman TM, Jensen BL (2010) Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J Am Soc Nephrol 21:448–459PubMedCrossRef Madsen K, Marcussen N, Pedersen M, Kjaersgaard G, Facemire C, Coffman TM, Jensen BL (2010) Angiotensin II promotes development of the renal microcirculation through AT1 receptors. J Am Soc Nephrol 21:448–459PubMedCrossRef
36.
go back to reference Rizkalla B, Forbes JM, Cooper ME, Cao Z (2003) Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol 14:3061–3071PubMedCrossRef Rizkalla B, Forbes JM, Cooper ME, Cao Z (2003) Increased renal vascular endothelial growth factor and angiopoietins by angiotensin II infusion is mediated by both AT1 and AT2 receptors. J Am Soc Nephrol 14:3061–3071PubMedCrossRef
37.
go back to reference Loghman-Adham M, Soto CE, Inagami T, Cassis L (2004) The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Ren Physiol 287:F775–F788CrossRef Loghman-Adham M, Soto CE, Inagami T, Cassis L (2004) The intrarenal renin-angiotensin system in autosomal dominant polycystic kidney disease. Am J Physiol Ren Physiol 287:F775–F788CrossRef
38.
go back to reference dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D’Amore PA (2012) Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 125:831–843CrossRef dela Paz NG, Walshe TE, Leach LL, Saint-Geniez M, D’Amore PA (2012) Role of shear-stress-induced VEGF expression in endothelial cell survival. J Cell Sci 125:831–843CrossRef
39.
go back to reference Goettsch W, Gryczka C, Korff T, Ernst E, Goettsch C, Seebach J, Schnittler HJ, Augustin HG, Morawietz H (2008) Flow-dependent regulation of angiopoietin-2. J Cell Physiol 214:491–503PubMedCrossRef Goettsch W, Gryczka C, Korff T, Ernst E, Goettsch C, Seebach J, Schnittler HJ, Augustin HG, Morawietz H (2008) Flow-dependent regulation of angiopoietin-2. J Cell Physiol 214:491–503PubMedCrossRef
40.
go back to reference Reed BY, Masoumi A, Elhassan E, McFann K, Cadnapaphornchai MA, Maahs DM, Snell-Bergeon JK, Schrier RW (2011) Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease. Kidney Int 79:128–134PubMedCrossRef Reed BY, Masoumi A, Elhassan E, McFann K, Cadnapaphornchai MA, Maahs DM, Snell-Bergeon JK, Schrier RW (2011) Angiogenic growth factors correlate with disease severity in young patients with autosomal dominant polycystic kidney disease. Kidney Int 79:128–134PubMedCrossRef
41.
go back to reference Kanellis J, Fraser S, Katerelos M, Power DA (2000) Vascular endothelial growth factor is a survival factor for renal tubular epithelial cells. Am J Physiol Ren Physiol 278:F905–F915 Kanellis J, Fraser S, Katerelos M, Power DA (2000) Vascular endothelial growth factor is a survival factor for renal tubular epithelial cells. Am J Physiol Ren Physiol 278:F905–F915
42.
go back to reference Villegas G, Lange-Sperandio B, Tufro A (2005) Autocrine and paracrine functions of vascular endothelial growth factor (VEGF) in renal tubular epithelial cells. Kidney Int 67:449–457PubMedCrossRef Villegas G, Lange-Sperandio B, Tufro A (2005) Autocrine and paracrine functions of vascular endothelial growth factor (VEGF) in renal tubular epithelial cells. Kidney Int 67:449–457PubMedCrossRef
43.
go back to reference Hakroush S, Moeller MJ, Theilig F, Kaissling B, Sijmonsma TP, Jugold M, Akeson AL, Traykova-Brauch M, Hosser H, Hahnel B, Grone HJ, Koesters R, Kriz W (2009) Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation and glomerular disease. Am J Pathol 175:1883–1895PubMedCrossRef Hakroush S, Moeller MJ, Theilig F, Kaissling B, Sijmonsma TP, Jugold M, Akeson AL, Traykova-Brauch M, Hosser H, Hahnel B, Grone HJ, Koesters R, Kriz W (2009) Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation and glomerular disease. Am J Pathol 175:1883–1895PubMedCrossRef
44.
go back to reference Rees KA, Singh H, Brindle NP (2007) The receptor tyrosine kinase Tie1 is expressed and activated in epithelial tumour cell lines. Int J Oncol 31:893–897PubMed Rees KA, Singh H, Brindle NP (2007) The receptor tyrosine kinase Tie1 is expressed and activated in epithelial tumour cell lines. Int J Oncol 31:893–897PubMed
45.
go back to reference Makinde TO, Agrawal DK (2011) Increased expression of angiopoietins and Tie2 in the lungs of chronic asthmatic mice. Am J Respir Cell Mol Biol 44:384–393PubMedCrossRef Makinde TO, Agrawal DK (2011) Increased expression of angiopoietins and Tie2 in the lungs of chronic asthmatic mice. Am J Respir Cell Mol Biol 44:384–393PubMedCrossRef
46.
go back to reference Ramsden JD, Cocks HC, Shams M, Niijar S, Watkinson JC, Sheppard MC, Ahmed A, Eggo MC (2001) Tie-2 is expressed on thyroid follicular cells, is increased in goiter, and is regulated by thyrotropin through cyclic adenosine 3’5’-monophosphate. J Clin Endocrinol Metab 86:2709–2716PubMedCrossRef Ramsden JD, Cocks HC, Shams M, Niijar S, Watkinson JC, Sheppard MC, Ahmed A, Eggo MC (2001) Tie-2 is expressed on thyroid follicular cells, is increased in goiter, and is regulated by thyrotropin through cyclic adenosine 3’5’-monophosphate. J Clin Endocrinol Metab 86:2709–2716PubMedCrossRef
47.
48.
go back to reference Teilmann SC, Christensen ST (2005) Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol Int 29:340–346PubMedCrossRef Teilmann SC, Christensen ST (2005) Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol Int 29:340–346PubMedCrossRef
49.
go back to reference Raina S, Honer M, Kramer SD, Liu Y, Wang X, Segerer S, Wuthrich RP, Serra AL (2011) Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am J Physiol Ren Physiol 301:F773–F783CrossRef Raina S, Honer M, Kramer SD, Liu Y, Wang X, Segerer S, Wuthrich RP, Serra AL (2011) Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am J Physiol Ren Physiol 301:F773–F783CrossRef
50.
go back to reference Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136PubMedCrossRef Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J, Richardson C, Kopp JB, Kabir MG, Backx PH, Gerber HP, Ferrara N, Barisoni L, Alpers CE, Quaggin SE (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358:1129–1136PubMedCrossRef
51.
go back to reference Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278:12605–12608PubMedCrossRef Sugimoto H, Hamano Y, Charytan D, Cosgrove D, Kieran M, Sudhakar A, Kalluri R (2003) Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 278:12605–12608PubMedCrossRef
52.
go back to reference Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB (2007) VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol 293:C419–C428PubMedCrossRef Amura CR, Brodsky KS, Groff R, Gattone VH, Voelkel NF, Doctor RB (2007) VEGF receptor inhibition blocks liver cyst growth in pkd2(WS25/-) mice. Am J Physiol Cell Physiol 293:C419–C428PubMedCrossRef
53.
go back to reference Long DA, Price KL, Ioffe E, Gannon CM, Gnudi L, White KE, Yancopoulos GD, Rudge JS, Woolf AS (2008) Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int 74:300–309PubMedCrossRef Long DA, Price KL, Ioffe E, Gannon CM, Gnudi L, White KE, Yancopoulos GD, Rudge JS, Woolf AS (2008) Angiopoietin-1 therapy enhances fibrosis and inflammation following folic acid-induced acute renal injury. Kidney Int 74:300–309PubMedCrossRef
54.
go back to reference Mu W, Long DA, Ouyang X, Agarwal A, Cruz PE, Roncal CA, Nakagawa T, Yu X, Hauswirth WW, Johnson RJ (2009) Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Ren Physiol 296:F145–F152CrossRef Mu W, Long DA, Ouyang X, Agarwal A, Cruz PE, Roncal CA, Nakagawa T, Yu X, Hauswirth WW, Johnson RJ (2009) Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. Am J Physiol Ren Physiol 296:F145–F152CrossRef
55.
go back to reference Mellon MJ, Bae KH, Steding CE, Jimenez JA, Kao C, Gardner TA (2008) Suppression of renal cell carcinoma growth and metastasis with sustained antiangiogenic gene therapy. Hum Gene Ther 19:487–495PubMedCrossRef Mellon MJ, Bae KH, Steding CE, Jimenez JA, Kao C, Gardner TA (2008) Suppression of renal cell carcinoma growth and metastasis with sustained antiangiogenic gene therapy. Hum Gene Ther 19:487–495PubMedCrossRef
56.
go back to reference Carew JS, Esquvel JA 2nd, Espitia CM, Schultes CM, Milbaier M, Lewis JD, Janssen B, Giles FJ, Nawrocki ST (2012) ELR5104444 inhibits tumor growth and angiogenesis by abrogating HIF activity and disrupting microtubules in renal cell carcimona. PLoS One 7:e31120PubMedCrossRef Carew JS, Esquvel JA 2nd, Espitia CM, Schultes CM, Milbaier M, Lewis JD, Janssen B, Giles FJ, Nawrocki ST (2012) ELR5104444 inhibits tumor growth and angiogenesis by abrogating HIF activity and disrupting microtubules in renal cell carcimona. PLoS One 7:e31120PubMedCrossRef
57.
go back to reference Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE (2012) Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in himblimb ischemia. J Biol Chem 287:27055–27064PubMedCrossRef Yin KJ, Olsen K, Hamblin M, Zhang J, Schwendeman SP, Chen YE (2012) Vascular endothelial cell-specific microRNA-15a inhibits angiogenesis in himblimb ischemia. J Biol Chem 287:27055–27064PubMedCrossRef
58.
go back to reference Chang MY, Parker E, El Nahas M, Haylor JL, Ong AC (2007) Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:560–569PubMedCrossRef Chang MY, Parker E, El Nahas M, Haylor JL, Ong AC (2007) Endothelin B receptor blockade accelerates disease progression in a murine model of autosomal dominant polycystic kidney disease. J Am Soc Nephrol 18:560–569PubMedCrossRef
59.
go back to reference Hocher B, Zart R, Schwarz A, Vogt V, Braun C, Thone-Reineke C, Braun N, Neumayer HH, Koppenhagen K, Bauer C, Rohmeiss P (1998) Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol 9:1169–1177PubMed Hocher B, Zart R, Schwarz A, Vogt V, Braun C, Thone-Reineke C, Braun N, Neumayer HH, Koppenhagen K, Bauer C, Rohmeiss P (1998) Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol 9:1169–1177PubMed
60.
go back to reference McCarter SD, Lai PF, Suen RS, Stewart DJ (2006) Regulation of endothelin-1 by angiopoietin-1: implications for inflammation. Exp Biol Med 231:985–991 McCarter SD, Lai PF, Suen RS, Stewart DJ (2006) Regulation of endothelin-1 by angiopoietin-1: implications for inflammation. Exp Biol Med 231:985–991
61.
go back to reference Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, Maruyama S, Takei Y, Yuzawa Y, Matsuo S (2009) Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int 75:828–838PubMedCrossRef Sakamoto I, Ito Y, Mizuno M, Suzuki Y, Sawai A, Tanaka A, Maruyama S, Takei Y, Yuzawa Y, Matsuo S (2009) Lymphatic vessels develop during tubulointerstitial fibrosis. Kidney Int 75:828–838PubMedCrossRef
Metadata
Title
Angiogenesis and autosomal dominant polycystic kidney disease
Authors
Jennifer L. Huang
Adrian S. Woolf
David A. Long
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2013
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-012-2305-7

Other articles of this Issue 9/2013

Pediatric Nephrology 9/2013 Go to the issue