Skip to main content
Top
Published in: Pediatric Nephrology 9/2009

01-09-2009 | Review

Genetic and developmental basis for urinary tract obstruction

Author: Feng Chen

Published in: Pediatric Nephrology | Issue 9/2009

Login to get access

Abstract

Urinary tract obstruction results in obstructive nephropathy and uropathy. It is the most frequent cause of renal failure in infants and children. In the past two decades studies of transgenic models and humans have greatly enhanced our understanding of the genetic factors and developmental processes important in urinary tract obstruction. The emerging picture is that development of the urinary tract requires precise integration of a variety of progenitor cell populations of different embryonic origins. Such integration is controlled by an intricate signaling network that undergoes dynamic changes as the embryo develops. Most congenital forms of urinary tract obstruction result from the disruption of diverse factors and genetic pathways involved in these processes, especially in the morphogenesis of the urinary conduit or the functional aspects of the pyeloureteral peristaltic machinery.
Literature
1.
go back to reference Chevalier RL, Peters CA (2003) Congenital urinary tract obstruction: Proceedings of the State-Of-The-Art Strategic Planning Workshop—National Institutes of Health, Bethesda, Maryland, USA, 11–12 March 2002. Pediatr Nephrol 18:576–606PubMed Chevalier RL, Peters CA (2003) Congenital urinary tract obstruction: Proceedings of the State-Of-The-Art Strategic Planning Workshop—National Institutes of Health, Bethesda, Maryland, USA, 11–12 March 2002. Pediatr Nephrol 18:576–606PubMed
2.
go back to reference Chevalier RL (1999) Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr Nephrol 13:612–619PubMed Chevalier RL (1999) Molecular and cellular pathophysiology of obstructive nephropathy. Pediatr Nephrol 13:612–619PubMed
3.
go back to reference Chevalier RL (1998) Pathophysiology of obstructive nephropathy in the newborn. Semin Nephrol 18:585–593PubMed Chevalier RL (1998) Pathophysiology of obstructive nephropathy in the newborn. Semin Nephrol 18:585–593PubMed
4.
go back to reference Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113:1051–1058PubMedPubMedCentral Chang CP, McDill BW, Neilson JR, Joist HE, Epstein JA, Crabtree GR, Chen F (2004) Calcineurin is required in urinary tract mesenchyme for the development of the pyeloureteral peristaltic machinery. J Clin Invest 113:1051–1058PubMedPubMedCentral
6.
go back to reference Bascands JL, Schanstra JP (2005) Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 68:925–937PubMedPubMedCentral Bascands JL, Schanstra JP (2005) Obstructive nephropathy: insights from genetically engineered animals. Kidney Int 68:925–937PubMedPubMedCentral
7.
go back to reference Chevalier RL (2004) Promise for gene therapy in obstructive nephropathy. Kidney Int 66:1709–1710PubMed Chevalier RL (2004) Promise for gene therapy in obstructive nephropathy. Kidney Int 66:1709–1710PubMed
8.
go back to reference Peters CA (2005) Congenital obstructive nephropathy: is the fog lifting? Kidney Int 67:371–372PubMed Peters CA (2005) Congenital obstructive nephropathy: is the fog lifting? Kidney Int 67:371–372PubMed
9.
go back to reference Liapis H (2003) Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 93:e87–e91PubMed Liapis H (2003) Biology of congenital obstructive nephropathy. Nephron Exp Nephrol 93:e87–e91PubMed
10.
go back to reference Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283:F861–F875PubMed Klahr S, Morrissey J (2002) Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol 283:F861–F875PubMed
11.
go back to reference Chevalier RL (2002) Obstructive uropathy: state of the art. Pediatr Med Chir 24:95–97PubMed Chevalier RL (2002) Obstructive uropathy: state of the art. Pediatr Med Chir 24:95–97PubMed
12.
go back to reference Kenda RB, Kenig T, Budihna N (1991) Detecting vesico-ureteral reflux in asymptomatic siblings of children with reflux by direct radionuclide cystography. Eur J Pediatr 150:735–737 Kenda RB, Kenig T, Budihna N (1991) Detecting vesico-ureteral reflux in asymptomatic siblings of children with reflux by direct radionuclide cystography. Eur J Pediatr 150:735–737
13.
go back to reference Feather SA, Malcolm S, Woolf AS, Wright V, Blayton D, Reid CJ, Flinter FA, Proesmans W, Devriendt K, Carter J, Warwicker P, Goodship TH, Goodship JA (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66:1420–1425PubMedPubMedCentral Feather SA, Malcolm S, Woolf AS, Wright V, Blayton D, Reid CJ, Flinter FA, Proesmans W, Devriendt K, Carter J, Warwicker P, Goodship TH, Goodship JA (2000) Primary, nonsyndromic vesicoureteric reflux and its nephropathy is genetically heterogeneous, with a locus on chromosome 1. Am J Hum Genet 66:1420–1425PubMedPubMedCentral
14.
go back to reference Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J (2002) Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstet 266:163–167PubMed Queisser-Luft A, Stolz G, Wiesel A, Schlaefer K, Spranger J (2002) Malformations in newborn: results based on 30,940 infants and fetuses from the Mainz congenital birth defect monitoring system (1990–1998). Arch Gynecol Obstet 266:163–167PubMed
15.
go back to reference Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802PubMed Schedl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8:791–802PubMed
16.
go back to reference Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529PubMed Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529PubMed
17.
go back to reference Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691 Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74:679–691
18.
go back to reference Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117PubMed Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117PubMed
19.
go back to reference Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432PubMedPubMedCentral Wellik DM, Hawkes PJ, Capecchi MR (2002) Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev 16:1423–1432PubMedPubMedCentral
20.
go back to reference Xu PX, Zheng W, Huang L, Marie P, Laclef DL (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedPubMedCentral Xu PX, Zheng W, Huang L, Marie P, Laclef DL (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094PubMedPubMedCentral
21.
go back to reference Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMed Nishinakamura R, Matsumoto Y, Nakao K, Nakamura K, Sato A, Copeland NG, Gilbert DJ, Jenkins NA, Scully S, Lacey DL, Katsuki M, Asashima M, Yokota T (2001) Murine homolog of SALL1 is essential for ureteric bud invasion in kidney development. Development 128:3105–3115PubMed
22.
go back to reference Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336PubMed Sajithlal G, Zou D, Silvius D, Xu PX (2005) Eya 1 acts as a critical regulator for specifying the metanephric mesenchyme. Dev Biol 284:323–336PubMed
23.
go back to reference Wilm B, James RG, Schultheiss TM, Hogan BL (2004) The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 271:176–189PubMed Wilm B, James RG, Schultheiss TM, Hogan BL (2004) The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. Dev Biol 271:176–189PubMed
24.
go back to reference Grieshammer U, Le M, Plump AS, Wang F (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717PubMed Grieshammer U, Le M, Plump AS, Wang F (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6:709–717PubMed
25.
go back to reference Shakya R, Jho EH, Kotka P, Wu Z, Kholodilv N, Burke R, D’Agati V, Constantini F (2005) The role of GDNF in patterning the excretory system. Dev Biol 283:70–84PubMed Shakya R, Jho EH, Kotka P, Wu Z, Kholodilv N, Burke R, D’Agati V, Constantini F (2005) The role of GDNF in patterning the excretory system. Dev Biol 283:70–84PubMed
26.
go back to reference Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, Nigam SK (2007) Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 18:3147–3155PubMed Maeshima A, Sakurai H, Choi Y, Kitamura S, Vaughn DA, Tee JB, Nigam SK (2007) Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 18:3147–3155PubMed
27.
go back to reference Bates CM (2007) Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol 22:343–349PubMed Bates CM (2007) Role of fibroblast growth factor receptor signaling in kidney development. Pediatr Nephrol 22:343–349PubMed
28.
go back to reference Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598PubMedPubMedCentral Hains D, Sims-Lucas S, Kish K, Saha M, McHugh K, Bates CM (2008) Role of fibroblast growth factor receptor 2 in kidney mesenchyme. Pediatr Res 64:592–598PubMedPubMedCentral
29.
go back to reference Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333PubMedPubMedCentral Jain S, Encinas M, Johnson EM Jr, Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20:321–333PubMedPubMedCentral
30.
go back to reference Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127PubMed Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the kidney. Bioessays 28:117–127PubMed
31.
go back to reference Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMed Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R, Gross I, Martin GR, Lufkin T, McMahon AP, Wilson PD, Costantini FD, Mason IJ, Licht JD (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMed
32.
go back to reference Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Constantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477PubMed Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Constantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477PubMed
33.
go back to reference Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188:235–247PubMed Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188:235–247PubMed
34.
go back to reference Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedPubMedCentral Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873PubMedPubMedCentral
35.
go back to reference Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410PubMed Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131:3401–3410PubMed
36.
go back to reference Batourina E, Choi C, Paragas N, Bello N, Hensle T, Constantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115PubMed Batourina E, Choi C, Paragas N, Bello N, Hensle T, Constantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115PubMed
37.
go back to reference Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126PubMed Marose TD, Merkel CE, McMahon AP, Carroll TJ (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126PubMed
38.
go back to reference Murer L, Benetti E, Artifoni L (2007) Embryology and genetics of primary vesico-ureteric reflux and associated renal dysplasia. Pediatr Nephrol 22:788–797PubMedPubMedCentral Murer L, Benetti E, Artifoni L (2007) Embryology and genetics of primary vesico-ureteric reflux and associated renal dysplasia. Pediatr Nephrol 22:788–797PubMedPubMedCentral
39.
go back to reference Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089PubMed Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089PubMed
40.
go back to reference Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sunn TT, Herzlinger D (2007) Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134:1967–1975PubMed Brenner-Anantharam A, Cebrian C, Guillaume R, Hurtado R, Sunn TT, Herzlinger D (2007) Tailbud-derived mesenchyme promotes urinary tract segmentation via BMP4 signaling. Development 134:1967–1975PubMed
41.
go back to reference Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, Shapiro E, Hensle T, Lambert S, Mendelsohn C (2007) The development of the bladder trigone, the center of the anti-reflux mechanism. Development 134:3763–3769PubMed Viana R, Batourina E, Huang H, Dressler GR, Kobayashi A, Behringer RR, Shapiro E, Hensle T, Lambert S, Mendelsohn C (2007) The development of the bladder trigone, the center of the anti-reflux mechanism. Development 134:3763–3769PubMed
42.
go back to reference Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116:663–674PubMedPubMedCentral Airik R, Bussen M, Singh MK, Petry M, Kispert A (2006) Tbx18 regulates the development of the ureteral mesenchyme. J Clin Invest 116:663–674PubMedPubMedCentral
43.
go back to reference Mahoney ZX, Sammut B, Xavier RJ, Cunningham J, Go G, Brim KL, Stappenbeck TS, Miner JH, Swat W (2006) Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci USA 103:19872–19877PubMed Mahoney ZX, Sammut B, Xavier RJ, Cunningham J, Go G, Brim KL, Stappenbeck TS, Miner JH, Swat W (2006) Discs-large homolog 1 regulates smooth muscle orientation in the mouse ureter. Proc Natl Acad Sci USA 103:19872–19877PubMed
44.
go back to reference Iizuka-Kogo A, Ishidao T, Akiyama T, Senda T (2007) Abnormal development of urogenital organs in Dlgh1-deficient mice. Development 134:1799–1807PubMed Iizuka-Kogo A, Ishidao T, Akiyama T, Senda T (2007) Abnormal development of urogenital organs in Dlgh1-deficient mice. Development 134:1799–1807PubMed
45.
go back to reference Murawski IJ, Myburgh DB, Favor J, Gupta IR (2007) Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol 293:F1736–F1745PubMed Murawski IJ, Myburgh DB, Favor J, Gupta IR (2007) Vesico-ureteric reflux and urinary tract development in the Pax2 1Neu+/- mouse. Am J Physiol Renal Physiol 293:F1736–F1745PubMed
46.
go back to reference Murawski IJ, Gupta IR (2006) Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 69:105–117PubMed Murawski IJ, Gupta IR (2006) Vesicoureteric reflux and renal malformations: a developmental problem. Clin Genet 69:105–117PubMed
47.
go back to reference Lu W, Quintero-Rivera F, Fan Y, Alkuraya FS, Donovan DJ, Xi Q, Turbe-Doan A, Li QG, Campbell CG, Shanske AL, Sherr EH, Ahmad A, Peters R, Rilliet B, Parvex P, Bassuk AG, Harris DJ, Ferguson H, Kelly C, Walsh CA, Gronostajski RM, Devriendt K, Higgins A, Ligon AH, Quade BJ, Morton CC, Gusella JF, Maas RL (2007) NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet 3:e80PubMedPubMedCentral Lu W, Quintero-Rivera F, Fan Y, Alkuraya FS, Donovan DJ, Xi Q, Turbe-Doan A, Li QG, Campbell CG, Shanske AL, Sherr EH, Ahmad A, Peters R, Rilliet B, Parvex P, Bassuk AG, Harris DJ, Ferguson H, Kelly C, Walsh CA, Gronostajski RM, Devriendt K, Higgins A, Ligon AH, Quade BJ, Morton CC, Gusella JF, Maas RL (2007) NFIA haploinsufficiency is associated with a CNS malformation syndrome and urinary tract defects. PLoS Genet 3:e80PubMedPubMedCentral
48.
go back to reference Alcaraz A, Vinaixa F, Tejedo-Mateu A, Fores MM, Gotzens V, Mestres CA, Oliveira J, Carretero P (1991) Obstruction and recanalization of the ureter during embryonic development. J Urol 145:410–416PubMed Alcaraz A, Vinaixa F, Tejedo-Mateu A, Fores MM, Gotzens V, Mestres CA, Oliveira J, Carretero P (1991) Obstruction and recanalization of the ureter during embryonic development. J Urol 145:410–416PubMed
49.
go back to reference Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50:683–721PubMed Santicioli P, Maggi CA (1998) Myogenic and neurogenic factors in the control of pyeloureteral motility and ureteral peristalsis. Pharmacol Rev 50:683–721PubMed
50.
go back to reference DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197PubMed DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77:75–197PubMed
51.
go back to reference Mendelsohn C (2006) Going in circles: conserved mechanisms control radial patterning in the urinary and digestive tracts. J Clin Invest 116:635–637PubMedPubMedCentral Mendelsohn C (2006) Going in circles: conserved mechanisms control radial patterning in the urinary and digestive tracts. J Clin Invest 116:635–637PubMedPubMedCentral
52.
go back to reference Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed Yu J, Carroll TJ, McMahon AP (2002) Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development 129:5301–5312PubMed
53.
go back to reference Caubit X, Lye CM, Martin E, Coré N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310PubMed Caubit X, Lye CM, Martin E, Coré N, Long DA, Vola C, Jenkins D, Garratt AN, Skaer H, Woolf AS, Fasano L (2008) Teashirt 3 is necessary for ureteral smooth muscle differentiation downstream of SHH and BMP4. Development 135:3301–3310PubMed
54.
go back to reference Fujinaka H, Miyazaki Y, Matsusaka T, Yoshida H, Fogo AB, Inagami T, Ichikawa I (2000) Salutary role for angiotensin in partial urinary tract obstruction. Kidney Int 58:2018–2027PubMed Fujinaka H, Miyazaki Y, Matsusaka T, Yoshida H, Fogo AB, Inagami T, Ichikawa I (2000) Salutary role for angiotensin in partial urinary tract obstruction. Kidney Int 58:2018–2027PubMed
55.
go back to reference Yosypiv IV, El-Dahr SS (2005) Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 20:1219–1229PubMed Yosypiv IV, El-Dahr SS (2005) Role of the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Pediatr Nephrol 20:1219–1229PubMed
56.
go back to reference Oshima K, Miyazaki Y, Brock JW 3rd, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852PubMed Oshima K, Miyazaki Y, Brock JW 3rd, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852PubMed
57.
go back to reference Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10PubMed Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10PubMed
58.
go back to reference Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497PubMedPubMedCentral Miyazaki Y, Tsuchida S, Nishimura H, Pope JC, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497PubMedPubMedCentral
59.
go back to reference Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501PubMed Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501PubMed
60.
go back to reference Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 74:953–965PubMed Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 74:953–965PubMed
61.
go back to reference Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMedPubMedCentral Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954PubMedPubMedCentral
62.
go back to reference Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanable T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMed Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanable T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753PubMed
63.
go back to reference Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167:1195–1204PubMedPubMedCentral Kong XT, Deng FM, Hu P, Liang FX, Zhou G, Auerbach AB, Genieser N, Nelson PK, Robbins ES, Shapiro E, Kachar B, Sun TT (2004) Roles of uroplakins in plaque formation, umbrella cell enlargement, and urinary tract diseases. J Cell Biol 167:1195–1204PubMedPubMedCentral
64.
go back to reference Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972PubMedPubMedCentral Hu P, Deng FM, Liang FX, Hu CM, Auerbach AB, Shapiro E, Wu XR, Kachar B, Sun TT (2000) Ablation of uroplakin III gene results in small urothelial plaques, urothelial leakage, and vesicoureteral reflux. J Cell Biol 151:961–972PubMedPubMedCentral
65.
go back to reference Abbott BD, Birnbaum LS, Pratt RM (1987) TCDD-induced hyperplasia of the ureteral epithelium produces hydronephrosis in murine fetuses. Teratology 35:329–334PubMed Abbott BD, Birnbaum LS, Pratt RM (1987) TCDD-induced hyperplasia of the ureteral epithelium produces hydronephrosis in murine fetuses. Teratology 35:329–334PubMed
66.
go back to reference Okazaki T, Otaka Y, Wang J, Hiai H, Takai T, Ravetch JV, Honjo T (2005) Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/−Pdcd1−/− mice. J Exp Med 202:1643–1648PubMedPubMedCentral Okazaki T, Otaka Y, Wang J, Hiai H, Takai T, Ravetch JV, Honjo T (2005) Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/−Pdcd1−/− mice. J Exp Med 202:1643–1648PubMedPubMedCentral
67.
go back to reference Lauder AJ, Jolin HE, Smith P, van den Berg JG, Jones A, Wisden W, Smith KG, Dasvarma A, Fallon PG, McKenzie AN (2004) Lymphomagenesis, hydronephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. J Immunol 173:113–122PubMed Lauder AJ, Jolin HE, Smith P, van den Berg JG, Jones A, Wisden W, Smith KG, Dasvarma A, Fallon PG, McKenzie AN (2004) Lymphomagenesis, hydronephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. J Immunol 173:113–122PubMed
68.
go back to reference Izquierdo L, Porteous M, Paramo PG, Connor JM (1992) Evidence for genetic heterogeneity in hereditary hydronephrosis caused by pelvi-ureteric junction obstruction, with one locus assigned to chromosome 6p. Hum Genet 89:557–560PubMed Izquierdo L, Porteous M, Paramo PG, Connor JM (1992) Evidence for genetic heterogeneity in hereditary hydronephrosis caused by pelvi-ureteric junction obstruction, with one locus assigned to chromosome 6p. Hum Genet 89:557–560PubMed
69.
go back to reference Mackintosh P, Almarhoos G, Heath DA (1989) HLA linkage with familial vesicoureteral reflux and familial pelvi-ureteric junction obstruction. Tissue Antigens 34:185–189PubMed Mackintosh P, Almarhoos G, Heath DA (1989) HLA linkage with familial vesicoureteral reflux and familial pelvi-ureteric junction obstruction. Tissue Antigens 34:185–189PubMed
70.
go back to reference McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957PubMed McDill BW, Li SZ, Kovach PA, Ding L, Chen F (2006) Congenital progressive hydronephrosis (cph) is caused by an S256L mutation in aquaporin-2 that affects its phosphorylation and apical membrane accumulation. Proc Natl Acad Sci USA 103:6952–6957PubMed
71.
go back to reference Feliubadalo L, Arbones ML, Manas S, Chillaron J, Visa J, Rodes M, Rousaud F, Zorzano A, Palacin M, Nunes V (2003) Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet 12:2097–2108PubMed Feliubadalo L, Arbones ML, Manas S, Chillaron J, Visa J, Rodes M, Rousaud F, Zorzano A, Palacin M, Nunes V (2003) Slc7a9-deficient mice develop cystinuria non-I and cystine urolithiasis. Hum Mol Genet 12:2097–2108PubMed
72.
go back to reference Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y, Imai T, Wang Y, Ogata M, Nishimatsu H, Moriyama N, Oh-hashi Y, Morita H, Ishikawa T, Nagai R, Yazaki Y, Matsushima K (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 105:1345–1352PubMedPubMedCentral Shindo T, Kurihara H, Kuno K, Yokoyama H, Wada T, Kurihara Y, Imai T, Wang Y, Ogata M, Nishimatsu H, Moriyama N, Oh-hashi Y, Morita H, Ishikawa T, Nagai R, Yazaki Y, Matsushima K (2000) ADAMTS-1: a metalloproteinase-disintegrin essential for normal growth, fertility, and organ morphology and function. J Clin Invest 105:1345–1352PubMedPubMedCentral
73.
go back to reference Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779PubMed Yang B, Gillespie A, Carlson EJ, Epstein CJ, Verkman AS (2001) Neonatal mortality in an aquaporin-2 knock-in mouse model of recessive nephrogenic diabetes insipidus. J Biol Chem 276:2775–2779PubMed
74.
go back to reference Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 1:e20PubMedPubMedCentral Lloyd DJ, Hall FW, Tarantino LM, Gekakis N (2005) Diabetes insipidus in mice with a mutation in aquaporin-2. PLoS Genet 1:e20PubMedPubMedCentral
75.
go back to reference Green M (1951) Further morphological effects of the short ear gene in the house mouse. J Morphol 88:1–22PubMed Green M (1951) Further morphological effects of the short ear gene in the house mouse. J Morphol 88:1–22PubMed
76.
go back to reference King JA, Marker PC, Seung KJ, Kinglesy DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166:112–122PubMed King JA, Marker PC, Seung KJ, Kinglesy DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166:112–122PubMed
77.
go back to reference Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh1) are required for the early organogenesis of the kidney and urinary tract. Development 127:1387–1395PubMed
78.
go back to reference Zhou Y, Lim KC, Onodera K, Takahashi S, Ohta J, Minegishi N, Tsai FY, Orkin SH, Yamamoto M, Engel JD (1998) Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. EMBO J 17:6689–6700PubMedPubMedCentral Zhou Y, Lim KC, Onodera K, Takahashi S, Ohta J, Minegishi N, Tsai FY, Orkin SH, Yamamoto M, Engel JD (1998) Rescue of the embryonic lethal hematopoietic defect reveals a critical role for GATA-2 in urogenital development. EMBO J 17:6689–6700PubMedPubMedCentral
79.
go back to reference Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124:4781–4791PubMed Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dolle P (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124:4781–4791PubMed
80.
go back to reference Held T, Paprotta I, Khulan J, Hemmerlein B, Binder L, Wolf S, Schubert S, Meinhardt A, Engel W, Adham IM (2006) Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development. Mol Cell Biol 26:8099–8108PubMedPubMedCentral Held T, Paprotta I, Khulan J, Hemmerlein B, Binder L, Wolf S, Schubert S, Meinhardt A, Engel W, Adham IM (2006) Hspa4l-deficient mice display increased incidence of male infertility and hydronephrosis development. Mol Cell Biol 26:8099–8108PubMedPubMedCentral
81.
go back to reference Aoki Y, Mori S, Kitajima K, Yokoyama O, Kanamaru H, Okada K, Yokota Y (2004) Id2 haploinsufficiency in mice leads to congenital hydronephrosis resembling that in humans. Genes Cells 9:1287–1296PubMed Aoki Y, Mori S, Kitajima K, Yokoyama O, Kanamaru H, Okada K, Yokota Y (2004) Id2 haploinsufficiency in mice leads to congenital hydronephrosis resembling that in humans. Genes Cells 9:1287–1296PubMed
82.
go back to reference Debiec H, Kutsche M, Schachner M, Ronco M (2002) Abnormal renal phenotype in L1 knockout mice: a novel cause of CAKUT. Nephrol Dial Transplant 17 [Suppl 9]:42–44PubMed Debiec H, Kutsche M, Schachner M, Ronco M (2002) Abnormal renal phenotype in L1 knockout mice: a novel cause of CAKUT. Nephrol Dial Transplant 17 [Suppl 9]:42–44PubMed
83.
go back to reference Gamp AC, Tanaka Y, Lullmann-Rauch R, Wittke D, D’Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, Illert AL, von Figura K, Saftig P (2003) LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 12:631–646PubMed Gamp AC, Tanaka Y, Lullmann-Rauch R, Wittke D, D’Hooge R, De Deyn PP, Moser T, Maier H, Hartmann D, Reiss K, Illert AL, von Figura K, Saftig P (2003) LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum Mol Genet 12:631–646PubMed
84.
go back to reference Carter T (1953) The genetics of luxate mice III. Horseshoe kidney, hydronephrosis and lumbar reduction. J Genet 51:441–457 Carter T (1953) The genetics of luxate mice III. Horseshoe kidney, hydronephrosis and lumbar reduction. J Genet 51:441–457
85.
go back to reference Singh S, Robinson M, Nahi F, Coley B, Robinson ML, Bates CM, Kornacker K, McHugh KM (2007) Identification of a unique transgenic mouse line that develops megabladder, obstructive uropathy, and renal dysfunction. J Am Soc Nephrol 18:461–471PubMed Singh S, Robinson M, Nahi F, Coley B, Robinson ML, Bates CM, Kornacker K, McHugh KM (2007) Identification of a unique transgenic mouse line that develops megabladder, obstructive uropathy, and renal dysfunction. J Am Soc Nephrol 18:461–471PubMed
86.
go back to reference Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA 97:5434–5439PubMed Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O (2000) Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA 97:5434–5439PubMed
87.
go back to reference Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132PubMed Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132PubMed
88.
go back to reference Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93:10657–10661PubMed Vega QC, Worby CA, Lechner MS, Dixon JE, Dressler GR (1996) Glial cell line-derived neurotrophic factor activates the receptor tyrosine kinase RET and promotes kidney morphogenesis. Proc Natl Acad Sci USA 93:10657–10661PubMed
89.
go back to reference Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, Saarma M, Arumäe U, Meng X, Lindahl M, Pachnis V, Sariola H (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from ureteric epithelium. Development 124:4077–4087PubMed
90.
go back to reference Yu OH, Murawski IJ, Myburgh DB, Gupta IR (2004) Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 287:F1123–F1130PubMed Yu OH, Murawski IJ, Myburgh DB, Gupta IR (2004) Overexpression of RET leads to vesicoureteric reflux in mice. Am J Physiol Renal Physiol 287:F1123–F1130PubMed
91.
go back to reference Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80:616–632PubMedPubMedCentral Lu W, van Eerde AM, Fan X, Quintero-Rivera F, Kulkarni S, Ferguson H, Kim HG, Fan Y, Xi Q, Li QG, Sanlaville D, Andrews W, Sundaresan V, Bi W, Yan J, Giltay JC, Wijmenga C, de Jong TP, Feather SA, Woolf AS, Rao Y, Lupski JR, Eccles MR, Quade BJ, Gusella JF, Morton CC, Maas RL (2007) Disruption of ROBO2 is associated with urinary tract anomalies and confers risk of vesicoureteral reflux. Am J Hum Genet 80:616–632PubMedPubMedCentral
92.
go back to reference Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, Polito C, Grassia C, Nobili B, Rambaldi PF, Oostra BA, Perrotta S (2008) ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 19:825–831PubMedPubMedCentral Bertoli-Avella AM, Conte ML, Punzo F, de Graaf BM, Lama G, La Manna A, Polito C, Grassia C, Nobili B, Rambaldi PF, Oostra BA, Perrotta S (2008) ROBO2 gene variants are associated with familial vesicoureteral reflux. J Am Soc Nephrol 19:825–831PubMedPubMedCentral
93.
go back to reference Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Schull GE (2002) Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277:37871–37880PubMed Lorenz JN, Baird NR, Judd LM, Noonan WT, Andringa A, Doetschman T, Manning PA, Liu LH, Miller ML, Schull GE (2002) Impaired renal NaCl absorption in mice lacking the ROMK potassium channel, a model for type II Bartter’s syndrome. J Biol Chem 277:37871–37880PubMed
94.
go back to reference Oxburgh L, Chu GC, Michael SK, Robertson EJ (2004) TGFbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development 131:4593–4605PubMed Oxburgh L, Chu GC, Michael SK, Robertson EJ (2004) TGFbeta superfamily signals are required for morphogenesis of the kidney mesenchyme progenitor population. Development 131:4593–4605PubMed
95.
go back to reference Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, Vainio S (2004) Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 131:3345–3356PubMed Chi L, Zhang S, Lin Y, Prunskaite-Hyyrylainen R, Vuolteenaho R, Itaranta P, Vainio S (2004) Sprouty proteins regulate ureteric branching by coordinating reciprocal epithelial Wnt11, mesenchymal Gdnf and stromal Fgf7 signalling during kidney development. Development 131:3345–3356PubMed
96.
go back to reference Lo SH, Yu QC, Degenstein L, Chen LB, Fuchs E (1997) Progressive kidney degeneration in mice lacking tensin. J Cell Biol 136:1349–1361PubMedPubMedCentral Lo SH, Yu QC, Degenstein L, Chen LB, Fuchs E (1997) Progressive kidney degeneration in mice lacking tensin. J Cell Biol 136:1349–1361PubMedPubMedCentral
Metadata
Title
Genetic and developmental basis for urinary tract obstruction
Author
Feng Chen
Publication date
01-09-2009
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2009
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-008-1072-y

Other articles of this Issue 9/2009

Pediatric Nephrology 9/2009 Go to the issue

Educational Review

In praise of arrays