Skip to main content
Top
Published in: Dysphagia 6/2019

Open Access 01-12-2019 | Ultrasound | Review

Assessment of the Food-Swallowing Process Using Bolus Visualisation and Manometry Simultaneously in a Device that Models Human Swallowing

Authors: Waqas M. Qazi, Olle Ekberg, Johan Wiklund, Reinhardt Kotze, Mats Stading

Published in: Dysphagia | Issue 6/2019

Login to get access

Abstract

The characteristics of the flows of boluses with different consistencies, i.e. different rheological properties, through the pharynx have not been fully elucidated. The results obtained using a novel in vitro device, the Gothenburg Throat, which allows simultaneous bolus flow visualisation and manometry assessments in the pharynx geometry, are presented, to explain the dependence of bolus flow on bolus consistency. Four different bolus consistencies of a commercial food thickener, 0.5, 1, 1.5 and 2 Pa s (at a shear rate of 50 s−1)—corresponding to a range from low honey-thick to pudding-thick consistencies on the National Dysphagia Diet (NDD) scale—were examined in the in vitro pharynx. The bolus velocities recorded in the simulator pharynx were in the range of 0.046–0.48 m/s, which is within the range reported in clinical studies. The corresponding wall shear rates associated with these velocities ranged from 13 s−1 (pudding consistency) to 209 s−1 (honey-thick consistency). The results of the in vitro manometry tests using different consistencies and bolus volumes were rather similar to those obtained in clinical studies. The in vitro device used in this study appears to be a valuable tool for pre-clinical analyses of thickened fluids. Furthermore, the results show that it is desirable to consider a broad range of shear rates when assessing the suitability of a certain consistency for swallowing.
Literature
2.
go back to reference Clavé P, De Kraa M, Arreola V, Girvent M, Farre R, Palomera E, Serra-Prat M. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment Pharmacol Ther. 2006;24(9):1385–94.CrossRef Clavé P, De Kraa M, Arreola V, Girvent M, Farre R, Palomera E, Serra-Prat M. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment Pharmacol Ther. 2006;24(9):1385–94.CrossRef
3.
go back to reference Tashiro A, Hasegawa A, Kohyama K, Kumagai H, Kumagai H. Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse Doppler method. Biosci Biotechnol Biochem. 2010;74(8):1598–605.CrossRef Tashiro A, Hasegawa A, Kohyama K, Kumagai H, Kumagai H. Relationship between the rheological properties of thickener solutions and their velocity through the pharynx as measured by the ultrasonic pulse Doppler method. Biosci Biotechnol Biochem. 2010;74(8):1598–605.CrossRef
4.
go back to reference Steele C, Alsanei W, Ayanikalath S, Barbon CA, Chen J, Cichero JY, Coutts K, Dantas R, Duivestein J, Giosa L, Hanson B, Lam P, Lecko C, Leigh C, Nagy A, Namasivayam A, Nascimento W, Odendaal I, Smith C, Wang H. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia. 2015;30(1):2–26. https://doi.org/10.1007/s00455-014-9578-x.CrossRefPubMed Steele C, Alsanei W, Ayanikalath S, Barbon CA, Chen J, Cichero JY, Coutts K, Dantas R, Duivestein J, Giosa L, Hanson B, Lam P, Lecko C, Leigh C, Nagy A, Namasivayam A, Nascimento W, Odendaal I, Smith C, Wang H. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia. 2015;30(1):2–26. https://​doi.​org/​10.​1007/​s00455-014-9578-x.CrossRefPubMed
5.
go back to reference Burbidge AS, Cichero JAY, Engmann J, Steele CM. A day in the life of the fluid bolus: An introduction to fluid mechanics of the oropharyngeal phase of swallowing with particular focus on dysphagia. Appl Rheol. 2016;5(26):10. Burbidge AS, Cichero JAY, Engmann J, Steele CM. A day in the life of the fluid bolus: An introduction to fluid mechanics of the oropharyngeal phase of swallowing with particular focus on dysphagia. Appl Rheol. 2016;5(26):10.
7.
go back to reference Zhu J, Mizunuma H, Michiwaki Y. Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing. J Texture Stud. 2014;45(6):430–9.CrossRef Zhu J, Mizunuma H, Michiwaki Y. Determination of characteristic shear rate of a liquid bolus through the pharynx during swallowing. J Texture Stud. 2014;45(6):430–9.CrossRef
9.
go back to reference Waqas MQ, Wiklund J, Altskar A, Ekberg O, Stading M. Shear and extensional rheology of commercial thickeners used for dysphagia management. J Texture Stud. 2017;48:507–17.CrossRef Waqas MQ, Wiklund J, Altskar A, Ekberg O, Stading M. Shear and extensional rheology of commercial thickeners used for dysphagia management. J Texture Stud. 2017;48:507–17.CrossRef
12.
go back to reference Meng Y, Rao MA, Datta AK. Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food Bioprod Process. 2005;83(4):297–305.CrossRef Meng Y, Rao MA, Datta AK. Computer simulation of the pharyngeal bolus transport of Newtonian and non-Newtonian fluids. Food Bioprod Process. 2005;83(4):297–305.CrossRef
14.
go back to reference Wiklund J, Shahram I, Stading M. Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci. 2007;62(16):4277–93.CrossRef Wiklund J, Shahram I, Stading M. Methodology for in-line rheology by ultrasound Doppler velocity profiling and pressure difference techniques. Chem Eng Sci. 2007;62(16):4277–93.CrossRef
18.
go back to reference Butler SG, Stuart A, Castell D, Russell GB, Koch K, Kemp S. Effects of age, gender, bolus condition, viscosity, and volume on pharyngeal and upper esophageal sphincter pressure and temporal measurements during swallowing. J Speech Lang Hear Res. 2009;52(1):240–53.CrossRef Butler SG, Stuart A, Castell D, Russell GB, Koch K, Kemp S. Effects of age, gender, bolus condition, viscosity, and volume on pharyngeal and upper esophageal sphincter pressure and temporal measurements during swallowing. J Speech Lang Hear Res. 2009;52(1):240–53.CrossRef
24.
go back to reference Nystrom M, Qazi WM, Bülow M, Ekberg O, Stading M. Effects of rheological factors on perceived ease of swallowing. Applied rheology. 2015;25(6):40–8. Nystrom M, Qazi WM, Bülow M, Ekberg O, Stading M. Effects of rheological factors on perceived ease of swallowing. Applied rheology. 2015;25(6):40–8.
25.
go back to reference Force NDDT, Association AD. National Dysphagia Diet: Standardization for Optimal Care. 2002: American Dietetic Association. Force NDDT, Association AD. National Dysphagia Diet: Standardization for Optimal Care. 2002: American Dietetic Association.
27.
go back to reference Wiklund J, Johansson M, Shaik J, Fischer P, Windhab E, Stading M, Hermansson A-M. In-line ultrasound based rheometry of industrial and model suspensions flowing through pipes. Paper presented at the trans. third international symposium on ultrasonic Doppler methods for fluid engineering, EFPL, Lausanne, Switzerland. 2002. Wiklund J, Johansson M, Shaik J, Fischer P, Windhab E, Stading M, Hermansson A-M. In-line ultrasound based rheometry of industrial and model suspensions flowing through pipes. Paper presented at the trans. third international symposium on ultrasonic Doppler methods for fluid engineering, EFPL, Lausanne, Switzerland. 2002.
30.
go back to reference Hasegawa A, Nakazawa F, Kumagai H. Velocity of swallowed food for dysphagic patients through the pharynx by ultrasonic method. Nippon Shokuhin Kagaku Kogaku Kaishi. 2008;55(11):541–8.CrossRef Hasegawa A, Nakazawa F, Kumagai H. Velocity of swallowed food for dysphagic patients through the pharynx by ultrasonic method. Nippon Shokuhin Kagaku Kogaku Kaishi. 2008;55(11):541–8.CrossRef
35.
go back to reference Dodds W, Man K, Cook I, Kahrilas P, Stewart E, Kern M. Influence of bolus volume on swallow-induced hyoid movement in normal subjects. Am J Roentgenol. 1988;150(6):1307–9.CrossRef Dodds W, Man K, Cook I, Kahrilas P, Stewart E, Kern M. Influence of bolus volume on swallow-induced hyoid movement in normal subjects. Am J Roentgenol. 1988;150(6):1307–9.CrossRef
37.
go back to reference Bhatia SJ, Shah C. How to perform and interpret upper esophageal sphincter manometry. J Neurogastroenterol Motil. 2013;19(1):99–103.CrossRef Bhatia SJ, Shah C. How to perform and interpret upper esophageal sphincter manometry. J Neurogastroenterol Motil. 2013;19(1):99–103.CrossRef
Metadata
Title
Assessment of the Food-Swallowing Process Using Bolus Visualisation and Manometry Simultaneously in a Device that Models Human Swallowing
Authors
Waqas M. Qazi
Olle Ekberg
Johan Wiklund
Reinhardt Kotze
Mats Stading
Publication date
01-12-2019
Publisher
Springer US
Published in
Dysphagia / Issue 6/2019
Print ISSN: 0179-051X
Electronic ISSN: 1432-0460
DOI
https://doi.org/10.1007/s00455-019-09995-8

Other articles of this Issue 6/2019

Dysphagia 6/2019 Go to the issue

Clinical Conundrum

A Patient with Dysphagia