Skip to main content
Top
Published in: Journal of Cancer Research and Clinical Oncology 2/2004

01-02-2004 | Original Paper

Cytochrome P450 (CYP) 1A2, sulfotransferase (SULT) 1A1, and N-acetyltransferase (NAT) 2 polymorphisms and susceptibility to urothelial cancer

Authors: Hiromasa Tsukino, Yoshiki Kuroda, Hiroyuki Nakao, Hirohisa Imai, Hisato Inatomi, Yukio Osada, Takahiko Katoh

Published in: Journal of Cancer Research and Clinical Oncology | Issue 2/2004

Login to get access

Abstract

Purpose

Arylamines are suspected to be the primary causative agent of urothelial cancer in tobacco smoke. In the human liver, arylamines are N-hydroxylated by a cytochrome P450 (CYP)1A2-catalyzed reaction, which produces a substrate for O-esterification that can be catalyzed by N-acetyltransferases (NAT) or sulfotransferases (SULT). Recently, several polymorphisms of CYP1A2, SULT1A1, and NAT2 that affect their activities have been reported.

Methods

In this study, 306 Japanese patients with urothelial transitional cell carcinoma and 306 healthy controls were compared for frequencies of CYP1A2, SULT1A1, and NAT2 genotypes.

Results

The frequencies of NAT2 intermediate or slow acetylator genotype were significantly higher in the urothelial cancer patients than in the healthy control subjects [odds ratio (OR)=1.49, 95% confidence interval (95% CI) 1.06–2.09, OR=3.23, 95% CI 1.72–6.08, respectively]. Stratifying by amount of smoking, among subjects who consumed >33.5 pack-years and carried the SULT1A1 *1/*1 or NAT2 slow acetylator genotype, the OR was 1.73 (95% CI 1.01–2.97) whereas it was 7.31 (95% CI 1.90–28.05) in non-smokers who carried the homozygous wild genotype, respectively. The relationships between CYP1A2, SULT1A1, and NAT2 polymorphisms and clinical findings including tumor differentiation, stage, and recurrence rate were analyzed. Only associations between NAT2 genotype and pathological findings were admitted, and the higher OR of NAT2 intermediate and slow acetylator genotype was more likely to present to a low-grade tumor (G1) among heavy-smokers.

Conclusions

Our results suggest that SULT1A1 *1/*1 and NAT2 slow acetylator genotypes might modulate the effect of carcinogenic arylamines contained in tobacco smoke, and that the modulation of NAT2 intermediate and slow acetylator genotype has a tendency to present a higher risk for highly differentiated tumors among heavy-smokers.
Literature
go back to reference Aveyard P, Adab P, Cheng KK, Wallace DM, Hey K, Murphy MF (2002) Does smoking status influence the prognosis of bladder cancer? A systematic review. BJU Int 90:228–239PubMed Aveyard P, Adab P, Cheng KK, Wallace DM, Hey K, Murphy MF (2002) Does smoking status influence the prognosis of bladder cancer? A systematic review. BJU Int 90:228–239PubMed
go back to reference Bartsch H, Caporaso N, Coda M, Kadlubar F, Malaveille C, Skipper P, Talaska G, Tannenbaum SR, Vineis P (1990) Carcinogen hemoglobin adducts, urinary mutagenicity, and metabolic phenotype in active and passive cigarette smokers. J Natl Cancer Inst 82:1826–1831PubMed Bartsch H, Caporaso N, Coda M, Kadlubar F, Malaveille C, Skipper P, Talaska G, Tannenbaum SR, Vineis P (1990) Carcinogen hemoglobin adducts, urinary mutagenicity, and metabolic phenotype in active and passive cigarette smokers. J Natl Cancer Inst 82:1826–1831PubMed
go back to reference Bartsch H, Malaveille C, Friesen M, Kadlubar FF, Vineis P (1993) Black (aircured) and blond (fluecured) tobacco cancer risk. IV: Molecular dosimetry studies implicate aromatic amines as bladder carcinogens. Eur J Cancer 29:1199–1207 Bartsch H, Malaveille C, Friesen M, Kadlubar FF, Vineis P (1993) Black (aircured) and blond (fluecured) tobacco cancer risk. IV: Molecular dosimetry studies implicate aromatic amines as bladder carcinogens. Eur J Cancer 29:1199–1207
go back to reference Bell DA, Taylor JA, Butler MA, Stephens EA, Wiest J, Brubaker LH, Kadlubar FF, Lucier GW (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14:1689–1692PubMed Bell DA, Taylor JA, Butler MA, Stephens EA, Wiest J, Brubaker LH, Kadlubar FF, Lucier GW (1993) Genotype/phenotype discordance for human arylamine N-acetyltransferase (NAT2) reveals a new slow-acetylator allele common in African-Americans. Carcinogenesis 14:1689–1692PubMed
go back to reference Carlini EJ, Raftogianis RB, Wood TC, Jin F, Zheng W, Rebbeck TR, Weinshilboum RM (2001) Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics 11:57–68CrossRefPubMed Carlini EJ, Raftogianis RB, Wood TC, Jin F, Zheng W, Rebbeck TR, Weinshilboum RM (2001) Sulfation pharmacogenetics: SULT1A1 and SULT1A2 allele frequencies in Caucasian, Chinese and African-American subjects. Pharmacogenetics 11:57–68CrossRefPubMed
go back to reference Cartwright RA, Glashan RW, Rogers HJ, Ahmad RA, Barham-Hall D, Higgins E, Kahn MA (1982) Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet 2:842–845PubMed Cartwright RA, Glashan RW, Rogers HJ, Ahmad RA, Barham-Hall D, Higgins E, Kahn MA (1982) Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet 2:842–845PubMed
go back to reference Chevalier D, Cauffiez C, Allorge D, Lo-Guidice JM, Lhermitte M, Lafitte JJ, Broly F (2001) Five novel natural allelic variants — 951A>C, 1042G>A (D348 N), 1156A>T (I386F), 1217G>A (C406Y) and 1291C>T (C431Y) — of the human CYP1A2 gene in a French Caucasian population. Hum Mutat 17:355–356CrossRef Chevalier D, Cauffiez C, Allorge D, Lo-Guidice JM, Lhermitte M, Lafitte JJ, Broly F (2001) Five novel natural allelic variants — 951A>C, 1042G>A (D348 N), 1156A>T (I386F), 1217G>A (C406Y) and 1291C>T (C431Y) — of the human CYP1A2 gene in a French Caucasian population. Hum Mutat 17:355–356CrossRef
go back to reference Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J, Kamataki T (1999) Detection of three genetic polymorphisms in the 5’-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res 90:899–902PubMed Chida M, Yokoi T, Fukui T, Kinoshita M, Yokota J, Kamataki T (1999) Detection of three genetic polymorphisms in the 5’-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res 90:899–902PubMed
go back to reference Cohen SM, Shirai T, Steineck G (2000) Epidemiology and etiology of premalignant and malignant urothelial changes. Scand J Urol Nephrol Suppl 205:105–115PubMed Cohen SM, Shirai T, Steineck G (2000) Epidemiology and etiology of premalignant and malignant urothelial changes. Scand J Urol Nephrol Suppl 205:105–115PubMed
go back to reference Crofts FG, Sutter TR, Strickland PT (1998) Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis 19:1969–1973PubMed Crofts FG, Sutter TR, Strickland PT (1998) Metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by human cytochrome P4501A1, P4501A2 and P4501B1. Carcinogenesis 19:1969–1973PubMed
go back to reference Gilissen RA, Bamforth KJ, Stavenuiter JF, Coughtrie MW, Meerman JH (1994) Sulfation of aromatic hydroxamic acids and hydroxylamines by multiple forms of human liver sulfotransferases. Carcinogenesis 15:39–45PubMed Gilissen RA, Bamforth KJ, Stavenuiter JF, Coughtrie MW, Meerman JH (1994) Sulfation of aromatic hydroxamic acids and hydroxylamines by multiple forms of human liver sulfotransferases. Carcinogenesis 15:39–45PubMed
go back to reference Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, Yu VL, Grewal R (1997) Human acetyltransferase polymorphisms. Mutat Res 376:61–70PubMed Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, Yu VL, Grewal R (1997) Human acetyltransferase polymorphisms. Mutat Res 376:61–70PubMed
go back to reference Green J, Banks E, Berrington A, Darby S, Deo H, Newton R (2000) N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene-environment interaction. Br J Cancer 83:412–417PubMed Green J, Banks E, Berrington A, Darby S, Deo H, Newton R (2000) N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene-environment interaction. Br J Cancer 83:412–417PubMed
go back to reference Guengerich FP (1992) Metabolic activation of carcinogens. Pharmacol Ther 54:17–61PubMed Guengerich FP (1992) Metabolic activation of carcinogens. Pharmacol Ther 54:17–61PubMed
go back to reference Hanssen HP, Agarwal DP, Goedde HW, Bucher H, Huland H, Brachmann W, Ovenbeck R (1985) Association of N-acetyltransferase polymorphism and environmental factors with bladder carcinogenesis. Study in a north German population. Eur Urol 11:263–266PubMed Hanssen HP, Agarwal DP, Goedde HW, Bucher H, Huland H, Brachmann W, Ovenbeck R (1985) Association of N-acetyltransferase polymorphism and environmental factors with bladder carcinogenesis. Study in a north German population. Eur Urol 11:263–266PubMed
go back to reference Inatomi H, Katoh T, Kawamoto T, Matsumoto T (1999) NAT2 gene polymorphism as a possible marker for susceptibility to bladder cancer in Japanese. Int J Urol 6:446–454PubMed Inatomi H, Katoh T, Kawamoto T, Matsumoto T (1999) NAT2 gene polymorphism as a possible marker for susceptibility to bladder cancer in Japanese. Int J Urol 6:446–454PubMed
go back to reference Japanese Urological Association and Japanese Society of Pathology (2001) General rules for clinical and pathological studies on bladder cancer. 3rd edn. Kanehara, Tokyo Japanese Urological Association and Japanese Society of Pathology (2001) General rules for clinical and pathological studies on bladder cancer. 3rd edn. Kanehara, Tokyo
go back to reference Johns LE, Houlston RS (2000) N-acetyl transferase-2 and bladder cancer risk: a meta-analysis. Environ Mol Mutagen 36:221–227PubMed Johns LE, Houlston RS (2000) N-acetyl transferase-2 and bladder cancer risk: a meta-analysis. Environ Mol Mutagen 36:221–227PubMed
go back to reference Kaderlik KR, Kadlubar FF (1995) Metabolic polymorphisms and carcinogen-DNA adduct formation in human populations. Pharmacogenetics 5:S108–S117PubMed Kaderlik KR, Kadlubar FF (1995) Metabolic polymorphisms and carcinogen-DNA adduct formation in human populations. Pharmacogenetics 5:S108–S117PubMed
go back to reference Kadlubar FF (1994) Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug Metab Rev 26:37–46PubMed Kadlubar FF (1994) Biochemical individuality and its implications for drug and carcinogen metabolism: recent insights from acetyltransferase and cytochrome P4501A2 phenotyping and genotyping in humans. Drug Metab Rev 26:37–46PubMed
go back to reference Kadlubar FF, Miller JA, Miller EC (1977) Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res 37:805–814PubMed Kadlubar FF, Miller JA, Miller EC (1977) Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis. Cancer Res 37:805–814PubMed
go back to reference Katoh T, Kaneko S, Boissy R, Watson M, Ikemura K, Bell DA (1998) A pilot study testing the association between N-acetyltransferases 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis 19:1803–1807PubMed Katoh T, Kaneko S, Boissy R, Watson M, Ikemura K, Bell DA (1998) A pilot study testing the association between N-acetyltransferases 1 and 2 and risk of oral squamous cell carcinoma in Japanese people. Carcinogenesis 19:1803–1807PubMed
go back to reference Katoh T, Inatomi H, Yang M, Kawamoto T, Matsumoto T, Bell DA (1999) Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and risk of urothelial transitional cell carcinoma among Japanese. Pharmacogenetics 9:401–404PubMed Katoh T, Inatomi H, Yang M, Kawamoto T, Matsumoto T, Bell DA (1999) Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) genes and risk of urothelial transitional cell carcinoma among Japanese. Pharmacogenetics 9:401–404PubMed
go back to reference Kloth MT, Gee RL, Messing EM, Swaminathan S (1994) Expression of N-acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787PubMed Kloth MT, Gee RL, Messing EM, Swaminathan S (1994) Expression of N-acetyltransferase (NAT) in cultured human uroepithelial cells. Carcinogenesis 15:2781–2787PubMed
go back to reference Lee SW, Jang IJ, Shin SG, Lee KH, Yim DS, Kim SW, Oh SJ, Lee SH (1994) CYP1A2 activity as a risk factor for bladder cancer. J Korean Med Sci 9:482–489PubMed Lee SW, Jang IJ, Shin SG, Lee KH, Yim DS, Kim SW, Oh SJ, Lee SH (1994) CYP1A2 activity as a risk factor for bladder cancer. J Korean Med Sci 9:482–489PubMed
go back to reference Lewis AJ, Walle UK, King RS, Kadlubar FF, Falany CN, Walle T (1998) Bioactivation of the cooked food mutagen N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by estrogen sulfotransferase in cultured human mammary epithelial cells. Carcinogenesis 19:2049–2053PubMed Lewis AJ, Walle UK, King RS, Kadlubar FF, Falany CN, Walle T (1998) Bioactivation of the cooked food mutagen N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine by estrogen sulfotransferase in cultured human mammary epithelial cells. Carcinogenesis 19:2049–2053PubMed
go back to reference Marcus PM, Vineis P, Rothman N (2000a) NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics 10:115–122PubMed Marcus PM, Vineis P, Rothman N (2000a) NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics 10:115–122PubMed
go back to reference Marcus PM, Hayes RB, Vineis P, Garcia-Closas M, Caporaso NE, Autrup H, Branch RA, Brockmoller J, Ishizaki T, Karakaya AE, Ladero JM, Mommsen S, Okkels H, Romkes M, Roots I, Rothman N (2000b) Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol Biomarkers Prev 9:461–467PubMed Marcus PM, Hayes RB, Vineis P, Garcia-Closas M, Caporaso NE, Autrup H, Branch RA, Brockmoller J, Ishizaki T, Karakaya AE, Ladero JM, Mommsen S, Okkels H, Romkes M, Roots I, Rothman N (2000b) Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol Biomarkers Prev 9:461–467PubMed
go back to reference Mommsen S, Aagaard J (1986) Susceptibility in urinary bladder cancer: acetyltransferase phenotypes and related risk factors. Cancer Lett 32:199–205PubMed Mommsen S, Aagaard J (1986) Susceptibility in urinary bladder cancer: acetyltransferase phenotypes and related risk factors. Cancer Lett 32:199–205PubMed
go back to reference Morales A, Eidinger D, Bruce AW (2002) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. 1976. J Urol 167:891–893PubMed Morales A, Eidinger D, Bruce AW (2002) Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. 1976. J Urol 167:891–893PubMed
go back to reference Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T (1999) Genetic polymorphism in the 5’-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem 125:803–808PubMed Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T (1999) Genetic polymorphism in the 5’-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem 125:803–808PubMed
go back to reference Ozawa S, Tang YM, Yamazoe Y, Kato R, Lang NP, Kadlubar FF (1998) Genetic polymorphisms in human liver phenol sulfotransferases involved in the bioactivation of N-hydroxy derivatives of carcinogenic arylamines and heterocyclic amines. Chem Biol Interact 109:237–248CrossRefPubMed Ozawa S, Tang YM, Yamazoe Y, Kato R, Lang NP, Kadlubar FF (1998) Genetic polymorphisms in human liver phenol sulfotransferases involved in the bioactivation of N-hydroxy derivatives of carcinogenic arylamines and heterocyclic amines. Chem Biol Interact 109:237–248CrossRefPubMed
go back to reference Ozawa S, Shimizu M, Katoh T, Miyajima A, Ohno Y, Matsumoto Y, Fukuoka M, Tang YM, Lang NP, Kadlubar FF (1999) Sulfating-activity and stability of cDNA-expressed allozymes of human phenol sulfotransferase, ST1A3*1 ((213)Arg) and ST1A3*2 ((213)His), both of which exist in Japanese as well as Caucasians. J Biochem 126:271–277PubMed Ozawa S, Shimizu M, Katoh T, Miyajima A, Ohno Y, Matsumoto Y, Fukuoka M, Tang YM, Lang NP, Kadlubar FF (1999) Sulfating-activity and stability of cDNA-expressed allozymes of human phenol sulfotransferase, ST1A3*1 ((213)Arg) and ST1A3*2 ((213)His), both of which exist in Japanese as well as Caucasians. J Biochem 126:271–277PubMed
go back to reference Ozawa S, Katoh T, Inatomi H, Imai H, Kuroda Y, Ichiba M, Ohno Y (2002) Association of genotypes of carcinogen-activating enzymes, phenol sulfotransferase SULT1A1 (ST1A3) and arylamine N-acetyltransferase NAT2, with urothelial cancer in a Japanese population. Int J Cancer 102:418–421CrossRefPubMed Ozawa S, Katoh T, Inatomi H, Imai H, Kuroda Y, Ichiba M, Ohno Y (2002) Association of genotypes of carcinogen-activating enzymes, phenol sulfotransferase SULT1A1 (ST1A3) and arylamine N-acetyltransferase NAT2, with urothelial cancer in a Japanese population. Int J Cancer 102:418–421CrossRefPubMed
go back to reference Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM (1997) Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 239:298–304PubMed Raftogianis RB, Wood TC, Otterness DM, Van Loon JA, Weinshilboum RM (1997) Phenol sulfotransferase pharmacogenetics in humans: association of common SULT1A1 alleles with TS PST phenotype. Biochem Biophys Res Commun 239:298–304PubMed
go back to reference Raftogianis RB, Wood TC, Weinshilboum RM (1999) Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol 58:605–616PubMed Raftogianis RB, Wood TC, Weinshilboum RM (1999) Human phenol sulfotransferases SULT1A2 and SULT1A1: genetic polymorphisms, allozyme properties, and human liver genotype-phenotype correlations. Biochem Pharmacol 58:605–616PubMed
go back to reference Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449CrossRefPubMed Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449CrossRefPubMed
go back to reference Seth P, Lunetta KL, Bell DW, Gray H, Nasser SM, Rhei E, Kaelin CM, Iglehart DJ, Marks JR, Garber JE, Haber DA, Polyak K (2000) Phenol sulfotransferases: hormonal regulation, polymorphism, and age of onset of breast cancer. Cancer Res 60:6859–6863PubMed Seth P, Lunetta KL, Bell DW, Gray H, Nasser SM, Rhei E, Kaelin CM, Iglehart DJ, Marks JR, Garber JE, Haber DA, Polyak K (2000) Phenol sulfotransferases: hormonal regulation, polymorphism, and age of onset of breast cancer. Cancer Res 60:6859–6863PubMed
go back to reference Silverman DT, Hartge P, Morrison AS, Devesa SS (1992) Epidemiology of bladder cancer. Hematol Oncol Clin North Am 6:1–30 Silverman DT, Hartge P, Morrison AS, Devesa SS (1992) Epidemiology of bladder cancer. Hematol Oncol Clin North Am 6:1–30
go back to reference Sobin LH, Wittekind Ch (1997) UICC TNM Classification of malignant tumors. 5th edn. Wiley, New York Sobin LH, Wittekind Ch (1997) UICC TNM Classification of malignant tumors. 5th edn. Wiley, New York
go back to reference Vineis P, Talaska G, Malaveille C, Bartsch H, Martone T, Sithisarankul P, Strickland P (1996) DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int J Cancer 65:314–316PubMed Vineis P, Talaska G, Malaveille C, Bartsch H, Martone T, Sithisarankul P, Strickland P (1996) DNA adducts in urothelial cells: relationship with biomarkers of exposure to arylamines and polycyclic aromatic hydrocarbons from tobacco smoke. Int J Cancer 65:314–316PubMed
go back to reference Vineis P, Marinelli D, Autrup H, Brockmoller J, Cascorbi I, Daly AK, Golka K, Okkels H, Risch A, Rothman N, Sim E, Taioli E (2001) Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev 10:1249–1252PubMed Vineis P, Marinelli D, Autrup H, Brockmoller J, Cascorbi I, Daly AK, Golka K, Okkels H, Risch A, Rothman N, Sim E, Taioli E (2001) Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev 10:1249–1252PubMed
go back to reference Wang Y, Spitz,M R, Tsou AM, Zhang K, Makan N, Wu X (2002) Sulfotransferase (SULT) 1A1 polymorphism as a predisposition factor for lung cancer: a case-control analysis. Lung Cancer 35:137–142CrossRefPubMed Wang Y, Spitz,M R, Tsou AM, Zhang K, Makan N, Wu X (2002) Sulfotransferase (SULT) 1A1 polymorphism as a predisposition factor for lung cancer: a case-control analysis. Lung Cancer 35:137–142CrossRefPubMed
go back to reference Williams JA, Stone EM, Millar BC, Gusterson BA, Grover PL, Phillips DH (1998) Determination of the enzymes responsible for activation of the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline in the human breast. Pharmacogenetics 8:519–528PubMed Williams JA, Stone EM, Millar BC, Gusterson BA, Grover PL, Phillips DH (1998) Determination of the enzymes responsible for activation of the heterocyclic amine 2-amino-3-methylimidazo[4,5-f]quinoline in the human breast. Pharmacogenetics 8:519–528PubMed
go back to reference Yamazoe Y, Nagata K, Yoshinari K, Fujita K, Shiraga T, Iwasaki K (1999) Sulfotransferase catalyzing sulfation of heterocyclic amines. Cancer Lett 143:103–107PubMed Yamazoe Y, Nagata K, Yoshinari K, Fujita K, Shiraga T, Iwasaki K (1999) Sulfotransferase catalyzing sulfation of heterocyclic amines. Cancer Lett 143:103–107PubMed
go back to reference Zheng W, Xie D, Cerhan JR, Sellers TA, Wen W, Folsom AR (2001) Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:89–94PubMed Zheng W, Xie D, Cerhan JR, Sellers TA, Wen W, Folsom AR (2001) Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomarkers Prev 10:89–94PubMed
Metadata
Title
Cytochrome P450 (CYP) 1A2, sulfotransferase (SULT) 1A1, and N-acetyltransferase (NAT) 2 polymorphisms and susceptibility to urothelial cancer
Authors
Hiromasa Tsukino
Yoshiki Kuroda
Hiroyuki Nakao
Hirohisa Imai
Hisato Inatomi
Yukio Osada
Takahiko Katoh
Publication date
01-02-2004
Publisher
Springer-Verlag
Published in
Journal of Cancer Research and Clinical Oncology / Issue 2/2004
Print ISSN: 0171-5216
Electronic ISSN: 1432-1335
DOI
https://doi.org/10.1007/s00432-003-0512-0

Other articles of this Issue 2/2004

Journal of Cancer Research and Clinical Oncology 2/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.