Skip to main content
Top
Published in: Medical Microbiology and Immunology 2-3/2022

01-06-2022 | SARS-CoV-2 | Review

Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy

Authors: Amirmasoud Rayati Damavandi, Razieh Dowran, Sarah Al Sharif, Fatah Kashanchi, Reza Jafari

Published in: Medical Microbiology and Immunology | Issue 2-3/2022

Login to get access

Abstract

An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Literature
2.
go back to reference Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedPubMedCentralCrossRef Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J et al (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24(6):490–502PubMedPubMedCentralCrossRef
3.
go back to reference Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966PubMedCrossRef Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966PubMedCrossRef
4.
go back to reference Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (Lond, Engl) 361(9366):1319–1325CrossRef Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W et al (2003) Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet (Lond, Engl) 361(9366):1319–1325CrossRef
5.
go back to reference Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA (2012) Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367(19):1814–1820PubMedCrossRef
6.
go back to reference Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273PubMedPubMedCentralCrossRef
7.
go back to reference Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733PubMedPubMedCentralCrossRef Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382(8):727–733PubMedPubMedCentralCrossRef
9.
go back to reference Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–27.e19PubMedPubMedCentralCrossRef Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182(4):812–27.e19PubMedPubMedCentralCrossRef
10.
go back to reference Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, Maceil A et al (2021) Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020-January 12, 2021. MMWR Morbid Mortal Weekly Rep. 70(3):95–99CrossRef Galloway SE, Paul P, MacCannell DR, Johansson MA, Brooks JT, Maceil A et al (2021) Emergence of SARS-CoV-2 B.1.1.7 Lineage—United States, December 29, 2020-January 12, 2021. MMWR Morbid Mortal Weekly Rep. 70(3):95–99CrossRef
11.
go back to reference Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020:5 Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020:5
12.
go back to reference Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Sci (N Y, NY). 372(6544):815–821CrossRef Faria NR, Mellan TA, Whittaker C, Claro IM, Candido DDS, Mishra S et al (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Sci (N Y, NY). 372(6544):815–821CrossRef
14.
go back to reference Ferrareze PAG, Franceschi VB, Mayer AM, Caldana GD, Zimerman RA, Thompson CE (2021) E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 93:104941PubMedPubMedCentralCrossRef Ferrareze PAG, Franceschi VB, Mayer AM, Caldana GD, Zimerman RA, Thompson CE (2021) E484K as an innovative phylogenetic event for viral evolution: genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect Genet Evol 93:104941PubMedPubMedCentralCrossRef
15.
go back to reference Kumar S, Nyodu R, Maurya VK, Saxena SK (2020) Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19) 2020:23–31 Kumar S, Nyodu R, Maurya VK, Saxena SK (2020) Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2). Coronavirus Disease 2019 (COVID-19) 2020:23–31
16.
go back to reference Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–130PubMedCrossRef Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y et al (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–130PubMedCrossRef
18.
go back to reference Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceut Sin B 10(7):1228–1238CrossRef Kang S, Yang M, Hong Z, Zhang L, Huang Z, Chen X et al (2020) Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharmaceut Sin B 10(7):1228–1238CrossRef
19.
go back to reference Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27(12):1202–1208PubMedPubMedCentralCrossRef Mandala VS, McKay MJ, Shcherbakov AA, Dregni AJ, Kolocouris A, Hong M (2020) Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat Struct Mol Biol 27(12):1202–1208PubMedPubMedCentralCrossRef
20.
go back to reference Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL et al (2020) The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem 296:100111PubMedPubMedCentralCrossRef Boson B, Legros V, Zhou B, Siret E, Mathieu C, Cosset FL et al (2020) The SARS-CoV-2 envelope and membrane proteins modulate maturation and retention of the spike protein, allowing assembly of virus-like particles. J Biol Chem 296:100111PubMedPubMedCentralCrossRef
21.
go back to reference Grubaugh ND, Petrone ME, Holmes EC (2020) We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol 5(4):529–530PubMedCrossRef Grubaugh ND, Petrone ME, Holmes EC (2020) We shouldn’t worry when a virus mutates during disease outbreaks. Nat Microbiol 5(4):529–530PubMedCrossRef
22.
go back to reference Sevajol M, Subissi L, Decroly E, Canard B, Imbert I (2014) Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 194:90–99PubMedPubMedCentralCrossRef Sevajol M, Subissi L, Decroly E, Canard B, Imbert I (2014) Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res 194:90–99PubMedPubMedCentralCrossRef
23.
go back to reference Niesen MJM, Anand P, Silvert E, Suratekar R, Pawlowski C, Ghosh P et al (2021) COVID-19 vaccines dampen genomic diversity of SARS-CoV-2: unvaccinated patients exhibit more antigenic mutational variance. medRxiv. 2021:8 Niesen MJM, Anand P, Silvert E, Suratekar R, Pawlowski C, Ghosh P et al (2021) COVID-19 vaccines dampen genomic diversity of SARS-CoV-2: unvaccinated patients exhibit more antigenic mutational variance. medRxiv. 2021:8
24.
go back to reference Kemp SA, Collier DA, Datir RP, Ferreira I, Gayed S, Jahun A et al (2021) SARS-CoV-2 evolution during treatment of chronic infection. Nature 592(7853):277–282PubMedPubMedCentralCrossRef Kemp SA, Collier DA, Datir RP, Ferreira I, Gayed S, Jahun A et al (2021) SARS-CoV-2 evolution during treatment of chronic infection. Nature 592(7853):277–282PubMedPubMedCentralCrossRef
28.
go back to reference Mansbach RA, Chakraborty S, Nguyen K, Montefiori DC, Korber B, Gnanakaran S (2021) The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci Adv 7:16CrossRef Mansbach RA, Chakraborty S, Nguyen K, Montefiori DC, Korber B, Gnanakaran S (2021) The SARS-CoV-2 Spike variant D614G favors an open conformational state. Sci Adv 7:16CrossRef
29.
go back to reference Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y et al (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17(7):765–767PubMedPubMedCentralCrossRef Xia S, Zhu Y, Liu M, Lan Q, Xu W, Wu Y et al (2020) Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 17(7):765–767PubMedPubMedCentralCrossRef
30.
go back to reference Jackson CB, Zhang L, Farzan M, Choe H (2021) Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 538:108–115PubMedCrossRef Jackson CB, Zhang L, Farzan M, Choe H (2021) Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochem Biophys Res Commun 538:108–115PubMedCrossRef
31.
go back to reference Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–84.e5PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78(4):779–84.e5PubMedPubMedCentralCrossRef
32.
go back to reference Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620PubMedPubMedCentralCrossRef Ou X, Liu Y, Lei X, Li P, Mi D, Ren L et al (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 11(1):1620PubMedPubMedCentralCrossRef
33.
go back to reference Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S et al (2006) SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281(6):3198–3203PubMedCrossRef Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S et al (2006) SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem 281(6):3198–3203PubMedCrossRef
34.
go back to reference Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al (2013) The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87(10):5502–5511PubMedPubMedCentralCrossRef Gierer S, Bertram S, Kaup F, Wrensch F, Heurich A, Krämer-Kühl A et al (2013) The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87(10):5502–5511PubMedPubMedCentralCrossRef
35.
go back to reference Liu T, Luo S, Libby P, Shi GP (2020) Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Therapeut. 213:107587CrossRef Liu T, Luo S, Libby P, Shi GP (2020) Cathepsin L-selective inhibitors: a potentially promising treatment for COVID-19 patients. Pharmacol Therapeut. 213:107587CrossRef
36.
go back to reference Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):134PubMedPubMedCentralCrossRef Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W et al (2021) Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther 6(1):134PubMedPubMedCentralCrossRef
37.
go back to reference Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K et al (2021) D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep 34(2):108630PubMedCrossRef Gobeil SM, Janowska K, McDowell S, Mansouri K, Parks R, Manne K et al (2021) D614G mutation alters SARS-CoV-2 spike conformation and enhances protease cleavage at the S1/S2 junction. Cell Rep 34(2):108630PubMedCrossRef
38.
go back to reference Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F (2021) Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. Int J Infect Dis 103:611–616PubMedCrossRef Mohammad A, Alshawaf E, Marafie SK, Abu-Farha M, Abubaker J, Al-Mulla F (2021) Higher binding affinity of furin for SARS-CoV-2 spike (S) protein D614G mutant could be associated with higher SARS-CoV-2 infectivity. Int J Infect Dis 103:611–616PubMedCrossRef
39.
go back to reference Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP et al (2021) SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 90:104760PubMedPubMedCentralCrossRef Bhattacharyya C, Das C, Ghosh A, Singh AK, Mukherjee S, Majumder PP et al (2021) SARS-CoV-2 mutation 614G creates an elastase cleavage site enhancing its spread in high AAT-deficient regions. Infect Genet Evol 90:104760PubMedPubMedCentralCrossRef
40.
go back to reference Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR et al (2021) The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife 2021:10 Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G, tenOever BR et al (2021) The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. Elife 2021:10
41.
go back to reference Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD et al (2020) SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11(1):6013PubMedPubMedCentralCrossRef Zhang L, Jackson CB, Mou H, Ojha A, Peng H, Quinlan BD et al (2020) SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat Commun 11(1):6013PubMedPubMedCentralCrossRef
42.
go back to reference Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM et al (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science (N Y, NY) 372(6541):525–530CrossRef Zhang J, Cai Y, Xiao T, Lu J, Peng H, Sterling SM et al (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science (N Y, NY) 372(6541):525–530CrossRef
43.
go back to reference Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P et al (2020) Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18(1):179PubMedPubMedCentralCrossRef Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P et al (2020) Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 18(1):179PubMedPubMedCentralCrossRef
44.
go back to reference Groves DC, Rowland-Jones SL, Angyal A (2021) The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 538:104–107PubMedCrossRef Groves DC, Rowland-Jones SL, Angyal A (2021) The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochem Biophys Res Commun 538:104–107PubMedCrossRef
46.
go back to reference Polydorides S, Archontis G (2021) Computational optimization of the SARS-CoV-2 receptor-binding-motif affinity for human ACE2. Biophys J 2021:1 Polydorides S, Archontis G (2021) Computational optimization of the SARS-CoV-2 receptor-binding-motif affinity for human ACE2. Biophys J 2021:1
47.
go back to reference Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM (2021) Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2021:1–11 Ortuso F, Mercatelli D, Guzzi PH, Giorgi FM (2021) Structural genetics of circulating variants affecting the SARS-CoV-2 spike/human ACE2 complex. J Biomol Struct Dyn 2021:1–11
48.
go back to reference Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215–220PubMedCrossRef Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al (2020) Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581(7807):215–220PubMedCrossRef
49.
go back to reference Villoutreix BO, Calvez V, Marcelin AG, Khatib AM (2021) In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 variants with a focus at the ACE2-spike RBD interface. Int J Mol Sci 22:4CrossRef Villoutreix BO, Calvez V, Marcelin AG, Khatib AM (2021) In Silico Investigation of the New UK (B.1.1.7) and South African (501Y.V2) SARS-CoV-2 variants with a focus at the ACE2-spike RBD interface. Int J Mol Sci 22:4CrossRef
50.
go back to reference Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A et al (2021) Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591(7849):293–299PubMedPubMedCentralCrossRef Johnson BA, Xie X, Bailey AL, Kalveram B, Lokugamage KG, Muruato A et al (2021) Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 591(7849):293–299PubMedPubMedCentralCrossRef
52.
go back to reference Kemp S, Datir R, Collier D (2020) Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/ΔV70. bioRxiv. 2020:1 Kemp S, Datir R, Collier D (2020) Recurrent emergence and transmission of a SARS-CoV-2 Spike deletion ΔH69/ΔV70. bioRxiv. 2020:1
53.
go back to reference Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Papa G et al (2021) Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv. 2020:12 Kemp SA, Meng B, Ferriera IATM, Datir R, Harvey WT, Papa G et al (2021) Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv. 2020:12
54.
go back to reference Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC et al (2020) The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. bioRxiv. 2020:107 Chan CEZ, Seah SGK, Chye DH, Massey S, Torres M, Lim APC et al (2020) The Fc-mediated effector functions of a potent SARS-CoV-2 neutralizing antibody, SC31, isolated from an early convalescent COVID-19 patient, are essential for the optimal therapeutic efficacy of the antibody. bioRxiv. 2020:107
55.
go back to reference Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci (N Y, NY). 372(6538):3055CrossRef Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Sci (N Y, NY). 372(6538):3055CrossRef
56.
go back to reference Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274PubMedCrossRef Davies NG, Jarvis CI, Edmunds WJ, Jewell NP, Diaz-Ordaz K, Keogh RH (2021) Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature 593(7858):270–274PubMedCrossRef
57.
go back to reference Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S et al (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855):616–622PubMedPubMedCentralCrossRef Wang Z, Schmidt F, Weisblum Y, Muecksch F, Barnes CO, Finkin S et al (2021) mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592(7855):616–622PubMedPubMedCentralCrossRef
58.
go back to reference Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. bioRxiv 2021:428137 Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. bioRxiv 2021:428137
59.
go back to reference Funk T, Pharris A, Spiteri G, Bundle N, Melidou A, Carr M et al (2021) Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26:16CrossRef Funk T, Pharris A, Spiteri G, Bundle N, Melidou A, Carr M et al (2021) Characteristics of SARS-CoV-2 variants of concern B.1.1.7, B.1.351 or P.1: data from seven EU/EEA countries, weeks 38/2020 to 10/2021. Euro Surveill 26:16CrossRef
60.
go back to reference Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS et al (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182(5):1295–310.e20PubMedPubMedCentralCrossRef Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS et al (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell 182(5):1295–310.e20PubMedPubMedCentralCrossRef
61.
go back to reference Pan T, Chen R, He X, Yuan Y, Deng X, Li R et al (2021) Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Therapy 6(1):420CrossRef Pan T, Chen R, He X, Yuan Y, Deng X, Li R et al (2021) Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct Target Therapy 6(1):420CrossRef
62.
go back to reference Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ et al (2020) Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science (N Y, NY) 369(6511):1603–1607CrossRef Gu H, Chen Q, Yang G, He L, Fan H, Deng YQ et al (2020) Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science (N Y, NY) 369(6511):1603–1607CrossRef
63.
go back to reference Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J et al (2021) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54(7):1611–21.e5PubMedPubMedCentralCrossRef Wang R, Zhang Q, Ge J, Ren W, Zhang R, Lan J et al (2021) Analysis of SARS-CoV-2 variant mutations reveals neutralization escape mechanisms and the ability to use ACE2 receptors from additional species. Immunity 54(7):1611–21.e5PubMedPubMedCentralCrossRef
64.
go back to reference Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H et al (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184(9):2362–71.e9CrossRef Li Q, Nie J, Wu J, Zhang L, Ding R, Wang H et al (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell 184(9):2362–71.e9CrossRef
65.
go back to reference Chen Q, Huang XY, Sun MX, Li RT, Gu H, Tian Y et al (2021) Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2. Natl Sci Rev 8(11):nwab167PubMedPubMedCentralCrossRef Chen Q, Huang XY, Sun MX, Li RT, Gu H, Tian Y et al (2021) Transient acquisition of cross-species infectivity during the evolution of SARS-CoV-2. Natl Sci Rev 8(11):nwab167PubMedPubMedCentralCrossRef
66.
go back to reference Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–76.e6PubMedPubMedCentralCrossRef Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe 29(3):463–76.e6PubMedPubMedCentralCrossRef
69.
go back to reference Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE (2021) SARS-CoV-2 variants of concern are emerging in India. Nat Med 27(7):1131–1133PubMedCrossRef Singh J, Rahman SA, Ehtesham NZ, Hira S, Hasnain SE (2021) SARS-CoV-2 variants of concern are emerging in India. Nat Med 27(7):1131–1133PubMedCrossRef
71.
go back to reference Pascarella S, Ciccozzi M, Zella D, Bianchi M, Benetti F, Benvenuto D et al (2021) SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate? J Med Virol 397:952 Pascarella S, Ciccozzi M, Zella D, Bianchi M, Benetti F, Benvenuto D et al (2021) SARS-CoV-2 B.1.617 Indian variants: are electrostatic potential changes responsible for a higher transmission rate? J Med Virol 397:952
72.
go back to reference Laffeber C, de Koning K, Kanaar R, Lebbink JHG (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 433(15):167058PubMedPubMedCentralCrossRef Laffeber C, de Koning K, Kanaar R, Lebbink JHG (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 433(15):167058PubMedPubMedCentralCrossRef
73.
go back to reference Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X et al (2021) Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Sci (N Y, NY) 373(6556):818–823CrossRef Yuan M, Huang D, Lee CD, Wu NC, Jackson AM, Zhu X et al (2021) Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Sci (N Y, NY) 373(6556):818–823CrossRef
74.
go back to reference Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Jolly B, Bhoyar RC et al (2021) Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. medRxiv. 2021:8076 Dhar MS, Marwal R, Radhakrishnan VS, Ponnusamy K, Jolly B, Bhoyar RC et al (2021) Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. medRxiv. 2021:8076
75.
go back to reference Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S et al (2021) Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2021:1 Twohig KA, Nyberg T, Zaidi A, Thelwall S, Sinnathamby MA, Aliabadi S et al (2021) Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis 2021:1
79.
go back to reference Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC et al (2020) The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv. 2020:311 Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC et al (2020) The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv. 2020:311
80.
go back to reference Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G (2021) Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2021:1 Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G (2021) Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2021:1
81.
go back to reference Pascarella S, Ciccozzi M, Bianchi M, Benvenuto D, Cauda R, Cassone A (2021) The electrostatic potential of the omicron variant spike is higher than in delta and delta-plus variants: a hint to higher transmissibility? J Med Virol 2021:1 Pascarella S, Ciccozzi M, Bianchi M, Benvenuto D, Cauda R, Cassone A (2021) The electrostatic potential of the omicron variant spike is higher than in delta and delta-plus variants: a hint to higher transmissibility? J Med Virol 2021:1
82.
go back to reference Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y et al (2021) SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 6(1):430PubMedPubMedCentralCrossRef Zhang X, Wu S, Wu B, Yang Q, Chen A, Li Y et al (2021) SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct Target Ther 6(1):430PubMedPubMedCentralCrossRef
83.
go back to reference Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C et al (2021) Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv. 2021:7432 Wilhelm A, Widera M, Grikscheit K, Toptan T, Schenk B, Pallas C et al (2021) Reduced neutralization of SARS-CoV-2 omicron variant by vaccine sera and monoclonal antibodies. medRxiv. 2021:7432
84.
go back to reference Wang Y, Zhang L, Li Q, Liang Z, Li T, Liu S et al (2022) The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 11(1):1–5PubMedCrossRef Wang Y, Zhang L, Li Q, Liang Z, Li T, Liu S et al (2022) The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron. Emerg Microbes Infect 11(1):1–5PubMedCrossRef
85.
go back to reference Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ et al (2021) Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv. 2021:68 Pulliam JRC, van Schalkwyk C, Govender N, von Gottberg A, Cohen C, Groome MJ et al (2021) Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa. medRxiv. 2021:68
86.
go back to reference Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602(7898):671–5. Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, et al (2022) Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 602(7898):671–5.
87.
go back to reference Aggarwal A, Stella AO, Walker G, Akerman A, Milogiannakis V, Brilot F, et al (2021) SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv [Preprint]. 2021 Dec 15:2021:2021.12.14.21267772. https://doi.org/10.1101/2021.12.14.21267772 Aggarwal A, Stella AO, Walker G, Akerman A, Milogiannakis V, Brilot F, et al (2021) SARS-CoV-2 Omicron: evasion of potent humoral responses and resistance to clinical immunotherapeutics relative to viral variants of concern. medRxiv [Preprint]. 2021 Dec 15:2021:2021.12.14.21267772. https://​doi.​org/​10.​1101/​2021.​12.​14.​21267772
88.
go back to reference Redd AD, Nardin A, Kared H, Bloch EM, Abel B, Pekosz A, et al (2021) Minimal cross-over between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. bioRxiv [Preprint]. 2021 Dec 9:2021.12.06.471446. https://doi.org/10.1101/2021.12.06.471446 Redd AD, Nardin A, Kared H, Bloch EM, Abel B, Pekosz A, et al (2021) Minimal cross-over between mutations associated with Omicron variant of SARS-CoV-2 and CD8+ T cell epitopes identified in COVID-19 convalescent individuals. bioRxiv [Preprint]. 2021 Dec 9:2021.12.06.471446. https://​doi.​org/​10.​1101/​2021.​12.​06.​471446
90.
go back to reference Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al (2022) Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England).399(10323):437–46. Wolter N, Jassat W, Walaza S, Welch R, Moultrie H, Groome M, et al (2022) Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study. Lancet (London, England).399(10323):437–46.
91.
go back to reference Mahase E (2021) Covid-19: Hospital admission 50–70% less likely with omicron than delta, but transmission a major concern. BMJ (Clin Res Ed) 375:3151 Mahase E (2021) Covid-19: Hospital admission 50–70% less likely with omicron than delta, but transmission a major concern. BMJ (Clin Res Ed) 375:3151
92.
go back to reference Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C et al (2021) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2021:1–18 Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C et al (2021) SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect 2021:1–18
93.
go back to reference Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al (2022) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602(7898):664–70. Cameroni E, Bowen JE, Rosen LE, Saliba C, Zepeda SK, Culap K, et al (2022) Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature. 602(7898):664–70.
94.
go back to reference Leist SR, Dinnon KH 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ et al (2020) A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183(4):1070–85.e12PubMedPubMedCentralCrossRef Leist SR, Dinnon KH 3rd, Schäfer A, Tse LV, Okuda K, Hou YJ et al (2020) A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183(4):1070–85.e12PubMedPubMedCentralCrossRef
95.
go back to reference Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solís L, et al (2021) The Emergence of Sars-CoV-2 Variant Lambda (C.37) in South America. Microbiol Spectr. 9(2):e0078921.PubMedCrossRef Romero PE, Dávila-Barclay A, Salvatierra G, González L, Cuicapuza D, Solís L, et al (2021) The Emergence of Sars-CoV-2 Variant Lambda (C.37) in South America. Microbiol Spectr. 9(2):e0078921.PubMedCrossRef
98.
go back to reference Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184(13):3426–37.e8PubMedPubMedCentralCrossRef Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184(13):3426–37.e8PubMedPubMedCentralCrossRef
99.
go back to reference McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, et al (2021) SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 373(6555):648–54. McCallum M, Bassi J, De Marco A, Chen A, Walls AC, Di Iulio J, et al (2021) SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 373(6555):648–54.
101.
102.
go back to reference Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Andrés Prada D et al (2021) Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. MedRxiv 26:2100008 Laiton-Donato K, Franco-Muñoz C, Álvarez-Díaz DA, Ruiz-Moreno HA, Usme-Ciro JA, Andrés Prada D et al (2021) Characterization of the emerging B.1.621 variant of interest of SARS-CoV-2. MedRxiv 26:2100008
106.
go back to reference Collier DA, De Marco A, Ferreira I, Meng B, Datir RP, Walls AC et al (2021) Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141PubMedCrossRef Collier DA, De Marco A, Ferreira I, Meng B, Datir RP, Walls AC et al (2021) Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 593(7857):136–141PubMedCrossRef
107.
go back to reference Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27(4):622–625PubMedCrossRef Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27(4):622–625PubMedCrossRef
108.
go back to reference Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS et al (2021) Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. medRxiv 385:585 Bruxvoort KJ, Sy LS, Qian L, Ackerson BK, Luo Y, Lee GS et al (2021) Effectiveness of mRNA-1273 against Delta, Mu, and other emerging variants. medRxiv 385:585
109.
go back to reference Miyakawa K, Jeremiah SS, Kato H, Ryo A (2021) Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv 12:987 Miyakawa K, Jeremiah SS, Kato H, Ryo A (2021) Neutralizing efficacy of vaccines against the SARS-CoV-2 Mu variant. medRxiv 12:987
110.
go back to reference Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD, Veesler D et al (2020) Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv. 2020:1 Hodcroft EB, Zuber M, Nadeau S, Crawford KHD, Bloom JD, Veesler D et al (2020) Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv. 2020:1
111.
go back to reference Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E (2021) Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325(13):1324–1326PubMedPubMedCentralCrossRef Zhang W, Davis BD, Chen SS, Sincuir Martinez JM, Plummer JT, Vail E (2021) Emergence of a novel SARS-CoV-2 variant in Southern California. JAMA 325(13):1324–1326PubMedPubMedCentralCrossRef
112.
go back to reference Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. J Clin Microbiol. 59(11):e0092121. Tchesnokova V, Kulasekara H, Larson L, Bowers V, Rechkina E, Kisiela D, et al (2021) Acquisition of the L452R Mutation in the ACE2-Binding Interface of Spike Protein Triggers Recent Massive Expansion of SARS-CoV-2 Variants. J Clin Microbiol. 59(11):e0092121.
113.
go back to reference Pereira F, Tosta S, Lima MM, Reboredo de Oliveira da Silva L, Nardy VB, Gómez MKA, et al (2021) Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report. J Med Virol. 93(9):5523–6. Pereira F, Tosta S, Lima MM, Reboredo de Oliveira da Silva L, Nardy VB, Gómez MKA, et al (2021) Genomic surveillance activities unveil the introduction of the SARS-CoV-2 B.1.525 variant of interest in Brazil: Case report. J Med Virol. 93(9):5523–6.
115.
go back to reference West AP, Jr., Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, et al (2021) Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nat Commun. 12(1):4886. West AP, Jr., Wertheim JO, Wang JC, Vasylyeva TI, Havens JL, Chowdhury MA, et al (2021) Detection and characterization of the SARS-CoV-2 lineage B.1.526 in New York. Nat Commun. 12(1):4886.
116.
go back to reference Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, et al (2021) Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature. 597(7878):703–8. Annavajhala MK, Mohri H, Wang P, Nair M, Zucker JE, Sheng Z, et al (2021) Emergence and expansion of SARS-CoV-2 B.1.526 after identification in New York. Nature. 597(7878):703–8.
118.
go back to reference McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC et al (2021) N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184(9):2332–47.e16PubMedPubMedCentralCrossRef McCallum M, De Marco A, Lempp FA, Tortorici MA, Pinto D, Walls AC et al (2021) N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184(9):2332–47.e16PubMedPubMedCentralCrossRef
120.
go back to reference Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv 94:e00127 Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al (2021) Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India. bioRxiv 94:e00127
121.
go back to reference Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY et al (2021) Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis 74:366–368CrossRef Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY et al (2021) Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees. Clin Infect Dis 74:366–368CrossRef
125.
go back to reference Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R et al (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Sci (N Y, NY) 371(6525):172–177CrossRef Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R et al (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Sci (N Y, NY) 371(6525):172–177CrossRef
126.
go back to reference Hodcroft EB, Domman DB, Snyder DJ, Oguntuyo KY, Van Diest M, Densmore KH et al (2021) Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. medRxiv 2021:2021.02.12.21251658 Hodcroft EB, Domman DB, Snyder DJ, Oguntuyo KY, Van Diest M, Densmore KH et al (2021) Emergence in late 2020 of multiple lineages of SARS-CoV-2 Spike protein variants affecting amino acid position 677. medRxiv 2021:2021.02.12.21251658
129.
go back to reference Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN et al (2021) Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29(1):44-57.e9PubMedPubMedCentralCrossRef Greaney AJ, Starr TN, Gilchuk P, Zost SJ, Binshtein E, Loes AN et al (2021) Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition. Cell Host Microbe 29(1):44-57.e9PubMedPubMedCentralCrossRef
130.
go back to reference Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839):682–687PubMedPubMedCentralCrossRef Barnes CO, Jette CA, Abernathy ME, Dam KA, Esswein SR, Gristick HB et al (2020) SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588(7839):682–687PubMedPubMedCentralCrossRef
131.
go back to reference Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183(4):1024–42.e21PubMedPubMedCentralCrossRef Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M et al (2020) Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell 183(4):1024–42.e21PubMedPubMedCentralCrossRef
132.
go back to reference Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS et al (2021) Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science (N Y, NY) 371(6531):850–854CrossRef Starr TN, Greaney AJ, Addetia A, Hannon WW, Choudhary MC, Dingens AS et al (2021) Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Science (N Y, NY) 371(6531):850–854CrossRef
133.
go back to reference Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R et al (2021) D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29(1):23-31.e4PubMedCrossRef Weissman D, Alameh MG, de Silva T, Collini P, Hornsby H, Brown R et al (2021) D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe 29(1):23-31.e4PubMedCrossRef
134.
go back to reference Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y et al (2020) Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183(3):739–51.e8PubMedPubMedCentralCrossRef Yurkovetskiy L, Wang X, Pascal KE, Tomkins-Tinch C, Nyalile TP, Wang Y et al (2020) Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183(3):739–51.e8PubMedPubMedCentralCrossRef
135.
go back to reference Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 27(4):620–1. Xie X, Liu Y, Liu J, Zhang X, Zou J, Fontes-Garfias CR, et al (2021) Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat Med. 27(4):620–1.
136.
go back to reference Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135PubMedCrossRef Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature 593(7857):130–135PubMedCrossRef
137.
go back to reference Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 6(5):e335–e345PubMedPubMedCentralCrossRef Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al (2021) Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. Lancet Public Health. 6(5):e335–e345PubMedPubMedCentralCrossRef
138.
go back to reference Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Krammer F, Simon V et al (2021) SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2:283–284CrossRef Jangra S, Ye C, Rathnasinghe R, Stadlbauer D, Krammer F, Simon V et al (2021) SARS-CoV-2 spike E484K mutation reduces antibody neutralisation. Lancet Microbe 2:283–284CrossRef
139.
go back to reference Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Lancet Microbe 586:583 Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Lambson BE et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Lancet Microbe 586:583
140.
go back to reference Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G et al (2021) Increased resistance of SARS-CoV-2 variant P1 to antibody neutralization. Cell Host Microbe 29(5):747-751.e414PubMedPubMedCentralCrossRef Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G et al (2021) Increased resistance of SARS-CoV-2 variant P1 to antibody neutralization. Cell Host Microbe 29(5):747-751.e414PubMedPubMedCentralCrossRef
141.
go back to reference Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V et al (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Sci (N Y, NY) 369(6506):1014–1018CrossRef Baum A, Fulton BO, Wloga E, Copin R, Pascal KE, Russo V et al (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Sci (N Y, NY) 369(6506):1014–1018CrossRef
142.
go back to reference Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA et al (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5):1171–87.e20PubMedPubMedCentralCrossRef Thomson EC, Rosen LE, Shepherd JG, Spreafico R, da Silva FA, Wojcechowskyj JA et al (2021) Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity. Cell 184(5):1171–87.e20PubMedPubMedCentralCrossRef
143.
go back to reference Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 596(7871):276–80. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et al (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 596(7871):276–80.
144.
go back to reference Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv [Preprint]. 2021 May 16:2021.05.14.444076. https://doi.org/10.1101/2021.05.14.444076 Tada T, Zhou H, Dcosta BM, Samanovic MI, Mulligan MJ, Landau NR (2021) The Spike Proteins of SARS-CoV-2 B.1.617 and B.1.618 Variants Identified in India Provide Partial Resistance to Vaccine-elicited and Therapeutic Monoclonal Antibodies. bioRxiv [Preprint]. 2021 May 16:2021.05.14.444076. https://​doi.​org/​10.​1101/​2021.​05.​14.​444076
145.
go back to reference Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 385(7):585–94. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al (2021) Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 385(7):585–94.
146.
go back to reference Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I et al (2020) SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 5:237 Andreano E, Piccini G, Licastro D, Casalino L, Johnson NV, Paciello I et al (2020) SARS-CoV-2 escape in vitro from a highly neutralizing COVID-19 convalescent plasma. bioRxiv 5:237
147.
go back to reference Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424PubMedPubMedCentralCrossRef Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM et al (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19(7):409–424PubMedPubMedCentralCrossRef
148.
go back to reference Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K (2022) Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies. J Autoimmunity. 126:102779CrossRef Kannan SR, Spratt AN, Sharma K, Chand HS, Byrareddy SN, Singh K (2022) Omicron SARS-CoV-2 variant: unique features and their impact on pre-existing antibodies. J Autoimmunity. 126:102779CrossRef
151.
go back to reference Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Controll Release 217:345–351CrossRef Pardi N, Tuyishime S, Muramatsu H, Kariko K, Mui BL, Tam YK et al (2015) Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J Controll Release 217:345–351CrossRef
152.
154.
go back to reference Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M et al (2021) Publisher correction: COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 590(7844):E17PubMedCrossRef Sahin U, Muik A, Derhovanessian E, Vogler I, Kranz LM, Vormehr M et al (2021) Publisher correction: COVID-19 vaccine BNT162b1 elicits human antibody and T(H)1 T cell responses. Nature 590(7844):E17PubMedCrossRef
155.
go back to reference Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA et al (2021) BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384(15):1412–1423PubMedCrossRef Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA et al (2021) BNT162b2 mRNA Covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med 384(15):1412–1423PubMedCrossRef
156.
go back to reference Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA et al (2021) Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 384(15):1466–1468PubMedCrossRef Liu Y, Liu J, Xia H, Zhang X, Fontes-Garfias CR, Swanson KA et al (2021) Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 384(15):1466–1468PubMedCrossRef
157.
go back to reference Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C et al (2021) Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet (London, England). 397(10292):2331–2333PubMedCentralCrossRef Wall EC, Wu M, Harvey R, Kelly G, Warchal S, Sawyer C et al (2021) Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. Lancet (London, England). 397(10292):2331–2333PubMedCentralCrossRef
158.
go back to reference Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al (2021) Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet (London, England). 398(10309):1407–16. Tartof SY, Slezak JM, Fischer H, Hong V, Ackerson BK, Ranasinghe ON, et al (2021) Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study. Lancet (London, England). 398(10309):1407–16.
159.
go back to reference Hansen CH, Schelde AB, Moustsen-Helms IR, Emborg H-D, Krause TG, Mølbak K et al (2021) Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study. medRxiv [Preprint]. 2021 Dec 23:2021.12.20.21267966. doi: https://doi.org/10.1101/2021.12.20.21267966 Hansen CH, Schelde AB, Moustsen-Helms IR, Emborg H-D, Krause TG, Mølbak K et al (2021) Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: a Danish cohort study. medRxiv [Preprint]. 2021 Dec 23:2021.12.20.21267966. doi: https://​doi.​org/​10.​1101/​2021.​12.​20.​21267966
160.
161.
go back to reference Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al (2022) Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 602(7898):654–6. Cele S, Jackson L, Khoury DS, Khan K, Moyo-Gwete T, Tegally H, et al (2022) Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 602(7898):654–6.
162.
go back to reference Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, et al (2022) mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell.185(3):457–66.e4. Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, et al (2022) mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell.185(3):457–66.e4.
163.
go back to reference Schmidt F, Muecksch F, Weisblum Y, Da Silva J, Bednarski E, Cho A, et al (2022) Plasma Neutralization of the SARS-CoV-2 Omicron Variant. N Engl J Med. 386(6):599–601. Schmidt F, Muecksch F, Weisblum Y, Da Silva J, Bednarski E, Cho A, et al (2022) Plasma Neutralization of the SARS-CoV-2 Omicron Variant. N Engl J Med. 386(6):599–601.
167.
go back to reference Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN et al (2020) An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 383(20):1920–1931PubMedCrossRef Jackson LA, Anderson EJ, Rouphael NG, Roberts PC, Makhene M, Coler RN et al (2020) An mRNA vaccine against SARS-CoV-2—preliminary report. N Engl J Med 383(20):1920–1931PubMedCrossRef
168.
go back to reference Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B et al (2021) A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20):2791–2799PubMedPubMedCentralCrossRef Chu L, McPhee R, Huang W, Bennett H, Pajon R, Nestorova B et al (2021) A preliminary report of a randomized controlled phase 2 trial of the safety and immunogenicity of mRNA-1273 SARS-CoV-2 vaccine. Vaccine 39(20):2791–2799PubMedPubMedCentralCrossRef
169.
go back to reference Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R et al (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384(5):403–416PubMedCrossRef Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R et al (2021) Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 384(5):403–416PubMedCrossRef
170.
go back to reference Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF et al (2021) Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 384(14):1372–1374PubMedCrossRef Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF et al (2021) Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 384(14):1372–1374PubMedCrossRef
171.
go back to reference Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE et al (2021) Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med 384(15):1468–1470PubMedCrossRef Wu K, Werner AP, Koch M, Choi A, Narayanan E, Stewart-Jones GBE et al (2021) Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med 384(15):1468–1470PubMedCrossRef
172.
go back to reference Choi A, Koch M, Wu K, Dixon G, Oestreicher J, Legault H et al (2021) Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. J Virol 2021:Jvio31321 Choi A, Koch M, Wu K, Dixon G, Oestreicher J, Legault H et al (2021) Serum neutralizing activity of mRNA-1273 against SARS-CoV-2 variants. J Virol 2021:Jvio31321
173.
go back to reference Pajon R, Doria-Rose NA, Shen X, Schmidt SD, O'Dell S, McDanal C, et al (2022) SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N Engl J Med. 2022 Jan 26:NEJMc2119912. https://doi.org/10.1056/NEJMc2119912. Epub ahead of print. Pajon R, Doria-Rose NA, Shen X, Schmidt SD, O'Dell S, McDanal C, et al (2022) SARS-CoV-2 Omicron Variant Neutralization after mRNA-1273 Booster Vaccination. N Engl J Med. 2022 Jan 26:NEJMc2119912. https://​doi.​org/​10.​1056/​NEJMc2119912. Epub ahead of print.
175.
go back to reference Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR et al (2021) Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (Lond, Engl) 396(10267):1979–1993CrossRef Ramasamy MN, Minassian AM, Ewer KJ, Flaxman AL, Folegatti PM, Owens DR et al (2021) Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet (Lond, Engl) 396(10267):1979–1993CrossRef
176.
go back to reference Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (Lond, Engl) 397(10269):99–111CrossRef Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK et al (2021) Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (Lond, Engl) 397(10269):99–111CrossRef
177.
go back to reference Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet (Lond, Engl) 397(10282):1351–1362CrossRef Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet (Lond, Engl) 397(10282):1351–1362CrossRef
178.
go back to reference Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L et al (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 384(20):1885–1898PubMedCrossRef Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L et al (2021) Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 384(20):1885–1898PubMedCrossRef
179.
go back to reference Clemens SAC, Folegatti PM, Emary KRW, Weckx LY, Ratcliff J, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun 12(1):5861PubMedPubMedCentralCrossRef Clemens SAC, Folegatti PM, Emary KRW, Weckx LY, Ratcliff J, Bibi S et al (2021) Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 lineages circulating in Brazil. Nat Commun 12(1):5861PubMedPubMedCentralCrossRef
180.
go back to reference Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM et al (2021) Interim results of a phase 1–2a trial of Ad26COV2S Covid-19 vaccine. N Engl J Med 384(19):1824–1835PubMedCrossRef Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM et al (2021) Interim results of a phase 1–2a trial of Ad26COV2S Covid-19 vaccine. N Engl J Med 384(19):1824–1835PubMedCrossRef
181.
go back to reference Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 384:2187–2201PubMedCrossRef Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B et al (2021) Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 384:2187–2201PubMedCrossRef
182.
go back to reference Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M et al (2021) Durable humoral and cellular immune responses following Ad26.COV2.S vaccination for COVID-19. MedRxiv 325:1535 Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M et al (2021) Durable humoral and cellular immune responses following Ad26.COV2.S vaccination for COVID-19. MedRxiv 325:1535
184.
go back to reference Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F et al (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385(13):1172–1183PubMedCrossRef Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F et al (2021) Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N Engl J Med 385(13):1172–1183PubMedCrossRef
185.
go back to reference Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L et al (2021) Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 Variant. N Engl J Med 384(20):1899–1909PubMedPubMedCentralCrossRef Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L et al (2021) Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 Variant. N Engl J Med 384(20):1899–1909PubMedPubMedCentralCrossRef
186.
go back to reference Mahase E (2021) Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ (Clin Res Ed). 372:296 Mahase E (2021) Covid-19: Novavax vaccine efficacy is 86% against UK variant and 60% against South African variant. BMJ (Clin Res Ed). 372:296
188.
go back to reference Yang S, Li Y, Dai L, Wang J, He P, Li C et al (2021) Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 21(8):1107–1119PubMedPubMedCentralCrossRef Yang S, Li Y, Dai L, Wang J, He P, Li C et al (2021) Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials. Lancet Infect Dis 21(8):1107–1119PubMedPubMedCentralCrossRef
189.
go back to reference Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q et al (2021) Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2(10):e494PubMedPubMedCentralCrossRef Zhao X, Zheng A, Li D, Zhang R, Sun H, Wang Q et al (2021) Neutralisation of ZF2001-elicited antisera to SARS-CoV-2 variants. Lancet Microbe. 2(10):e494PubMedPubMedCentralCrossRef
190.
go back to reference Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W et al (2021) Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2(7):e285PubMedPubMedCentralCrossRef Huang B, Dai L, Wang H, Hu Z, Yang X, Tan W et al (2021) Serum sample neutralisation of BBIBP-CorV and ZF2001 vaccines to SARS-CoV-2 501Y.V2. Lancet Microbe. 2(7):e285PubMedPubMedCentralCrossRef
192.
go back to reference Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J et al (2021) Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect 2021:1–24 Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J et al (2021) Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect 2021:1–24
193.
go back to reference Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Danilenko ED, Imatdinov IR, Nechaeva EA et al (2021) Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Ann RAMS 76(1):5–19CrossRef Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Danilenko ED, Imatdinov IR, Nechaeva EA et al (2021) Immunogenicity and protectivity of the peptide vaccine against SARS-CoV-2. Ann RAMS 76(1):5–19CrossRef
194.
go back to reference Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Usova SV, Danilenko ED, Nechaeva EA et al (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (Phase I-II). Russ J Infect Immunity 11(1):283–296CrossRef Ryzhikov AB, Ryzhikov EA, Bogryantseva MP, Usova SV, Danilenko ED, Nechaeva EA et al (2021) A single blind, placebo-controlled randomized study of the safety, reactogenicity and immunogenicity of the “EpiVacCorona” vaccine for the prevention of COVID-19, in volunteers aged 18–60 years (Phase I-II). Russ J Infect Immunity 11(1):283–296CrossRef
195.
go back to reference Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn AM, Gonzalez-Roche D, Bequet-Romero M, Marquez-Perera G et al (2021) The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen. medRxiv. 11:1 Limonta-Fernández M, Chinea-Santiago G, Martín-Dunn AM, Gonzalez-Roche D, Bequet-Romero M, Marquez-Perera G et al (2021) The SARS-CoV-2 receptor-binding domain expressed in Pichia pastoris as a candidate vaccine antigen. medRxiv. 11:1
196.
go back to reference Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J et al (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39(40):5940–5953PubMedPubMedCentralCrossRef Li L, Honda-Okubo Y, Huang Y, Jang H, Carlock MA, Baldwin J et al (2021) Immunisation of ferrets and mice with recombinant SARS-CoV-2 spike protein formulated with Advax-SM adjuvant protects against COVID-19 infection. Vaccine 39(40):5940–5953PubMedPubMedCentralCrossRef
197.
go back to reference Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 21(1):39–51PubMedCrossRef Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 21(1):39–51PubMedCrossRef
198.
go back to reference Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N et al (2021) Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326(1):35–45PubMedCrossRef Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N et al (2021) Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: a randomized clinical trial. JAMA 326(1):35–45PubMedCrossRef
199.
go back to reference Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D et al (2021) Persistence of antibody and T cell responses to the Sinopharm/BBIBP-CorV vaccine in Sri Lankan individuals. medRxiv [Preprint]. 2021 Oct 18:2021.10.14.21265030. doi: https://doi.org/10.1101/2021.10.14.21265030. Jeewandara C, Aberathna IS, Pushpakumara PD, Kamaladasa A, Guruge D, Jayathilaka D et al (2021) Persistence of antibody and T cell responses to the Sinopharm/BBIBP-CorV vaccine in Sri Lankan individuals. medRxiv [Preprint]. 2021 Oct 18:2021.10.14.21265030. doi: https://​doi.​org/​10.​1101/​2021.​10.​14.​21265030.
200.
go back to reference Yu X, Wei D, Xu W, Li Y, Li X, Zhang X-x et al (2021) Reduced sensitivity of SARS-CoV-2 Omicron variant to booster-enhanced neutralization. medRxiv. 398:10316 Yu X, Wei D, Xu W, Li Y, Li X, Zhang X-x et al (2021) Reduced sensitivity of SARS-CoV-2 Omicron variant to booster-enhanced neutralization. medRxiv. 398:10316
201.
go back to reference Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(2):181–192PubMedCrossRef Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(2):181–192PubMedCrossRef
202.
go back to reference Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812PubMedPubMedCentralCrossRef Wu Z, Hu Y, Xu M, Chen Z, Yang W, Jiang Z et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy adults aged 60 years and older: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 21(6):803–812PubMedPubMedCentralCrossRef
203.
go back to reference Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S et al (2021) Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (Lond, Engl) 398(10296):213–222CrossRef Tanriover MD, Doğanay HL, Akova M, Güner HR, Azap A, Akhan S et al (2021) Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet (Lond, Engl) 398(10296):213–222CrossRef
204.
go back to reference Palacios R, Batista AP, Albuquerque CSN, Patiño EG, Santos JdP, Conde MTRP, et al (2021) Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN [Preprint]. 2021 Apr 14. doi: https://doi.org/10.2139/ssrn.3822780. Palacios R, Batista AP, Albuquerque CSN, Patiño EG, Santos JdP, Conde MTRP, et al (2021) Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. SSRN [Preprint]. 2021 Apr 14. doi: https://​doi.​org/​10.​2139/​ssrn.​3822780.
205.
go back to reference Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G et al (2021) Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med 385(10):875–884PubMedCrossRef Jara A, Undurraga EA, González C, Paredes F, Fontecilla T, Jara G et al (2021) Effectiveness of an Inactivated SARS-CoV-2 Vaccine in Chile. N Engl J Med 385(10):875–884PubMedCrossRef
206.
go back to reference Vacharathit V, Aiewsakun P, Manopwisedjaroen S, Srisaowakarn C, Laopanupong T, Ludowyke N et al (2021) CoronaVac induces lower neutralising activity against variants of concern than natural infection. Lancet Infect Dis 21(10):1352–1354PubMedPubMedCentralCrossRef Vacharathit V, Aiewsakun P, Manopwisedjaroen S, Srisaowakarn C, Laopanupong T, Ludowyke N et al (2021) CoronaVac induces lower neutralising activity against variants of concern than natural infection. Lancet Infect Dis 21(10):1352–1354PubMedPubMedCentralCrossRef
207.
go back to reference Hitchings MDT, Ranzani OT, Torres MSS, de Oliveira SB, Almiron M, Said R, et al (2021) Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg Health Am 1:100025. Hitchings MDT, Ranzani OT, Torres MSS, de Oliveira SB, Almiron M, Said R, et al (2021) Effectiveness of CoronaVac among healthcare workers in the setting of high SARS-CoV-2 Gamma variant transmission in Manaus, Brazil: A test-negative case-control study. Lancet Reg Health Am 1:100025.
208.
go back to reference Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA et al (2021) Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe. 2(10):e527–e535PubMedPubMedCentralCrossRef Souza WM, Amorim MR, Sesti-Costa R, Coimbra LD, Brunetti NS, Toledo-Teixeira DA et al (2021) Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe. 2(10):e527–e535PubMedPubMedCentralCrossRef
209.
go back to reference Kang M, Yi Y, Li Y, Sun L, Deng A, Hu T, et al (2022) Effectiveness of Inactivated COVID-19 Vaccines Against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China : A Cohort Study. Ann Intern Med. 2022 Feb 1:M21-3509. doi: https://doi.org/10.7326/M21-3509. Epub ahead of print. Kang M, Yi Y, Li Y, Sun L, Deng A, Hu T, et al (2022) Effectiveness of Inactivated COVID-19 Vaccines Against Illness Caused by the B.1.617.2 (Delta) Variant During an Outbreak in Guangdong, China : A Cohort Study. Ann Intern Med. 2022 Feb 1:M21-3509. doi: https://​doi.​org/​10.​7326/​M21-3509. Epub ahead of print.
210.
go back to reference Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 21(5):637–646PubMedPubMedCentralCrossRef Ella R, Vadrevu KM, Jogdand H, Prasad S, Reddy S, Sarangi V et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: a double-blind, randomised, phase 1 trial. Lancet Infect Dis 21(5):637–646PubMedPubMedCentralCrossRef
211.
go back to reference Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis 21(7):950–961PubMedPubMedCentralCrossRef Ella R, Reddy S, Jogdand H, Sarangi V, Ganneru B, Prasad S et al (2021) Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infect Dis 21(7):950–961PubMedPubMedCentralCrossRef
212.
go back to reference Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V et al (2021) Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial. medRxiv. 24:102298 Ella R, Reddy S, Blackwelder W, Potdar V, Yadav P, Sarangi V et al (2021) Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): a, double-blind, randomised, controlled phase 3 trial. medRxiv. 24:102298
213.
go back to reference Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N et al (2021) Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. J Travel Med 28:4 Sapkal GN, Yadav PD, Ella R, Deshpande GR, Sahay RR, Gupta N et al (2021) Inactivated COVID-19 vaccine BBV152/COVAXIN effectively neutralizes recently emerged B.1.1.7 variant of SARS-CoV-2. J Travel Med 28:4
214.
go back to reference Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY et al (2021) Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J Travel Med 28:7CrossRef Yadav PD, Sapkal GN, Ella R, Sahay RR, Nyayanit DA, Patil DY et al (2021) Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. J Travel Med 28:7CrossRef
215.
go back to reference Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G et al (2021) Comparable neutralization of SARS-CoV-2 Delta AY.1 and Delta with individuals sera vaccinated with BBV152. J Travel Med 384:2212 Yadav PD, Sahay RR, Sapkal G, Nyayanit D, Shete AM, Deshpande G et al (2021) Comparable neutralization of SARS-CoV-2 Delta AY.1 and Delta with individuals sera vaccinated with BBV152. J Travel Med 384:2212
216.
go back to reference Morens DM, Taubenberger JK, Fauci AS (2022) Universal Coronavirus Vaccines - An Urgent Need. N Engl J Med. 386(4):297–9. Morens DM, Taubenberger JK, Fauci AS (2022) Universal Coronavirus Vaccines - An Urgent Need. N Engl J Med. 386(4):297–9.
219.
go back to reference Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA et al (2021) A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Sci Adv 7(37):eabh1547PubMedPubMedCentralCrossRef Zhu J, Ananthaswamy N, Jain S, Batra H, Tang WC, Lewry DA et al (2021) A universal bacteriophage T4 nanoparticle platform to design multiplex SARS-CoV-2 vaccine candidates by CRISPR engineering. Sci Adv 7(37):eabh1547PubMedPubMedCentralCrossRef
220.
go back to reference Markosian C, Staquicini DI, Dogra P, Dodero-Rojas E, Tang FHF, Smith TL, et al (2021) Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools. bioRxiv [Preprint]. 2021 Aug 30:2021.08.30.458222. doi: https://doi.org/10.1101/2021.08.30.458222. Markosian C, Staquicini DI, Dogra P, Dodero-Rojas E, Tang FHF, Smith TL, et al (2021) Apropos of Universal Epitope Discovery for COVID-19 Vaccines: A Framework for Targeted Phage Display-Based Delivery and Integration of New Evaluation Tools. bioRxiv [Preprint]. 2021 Aug 30:2021.08.30.458222. doi: https://​doi.​org/​10.​1101/​2021.​08.​30.​458222.
221.
go back to reference Lucchese G, Stufano A, Kanduc D (2011) Searching for an effective, safe and universal anti-HIV vaccine: finding the answer in just one short peptide. Self/nonself 2(1):49–54PubMedPubMedCentralCrossRef Lucchese G, Stufano A, Kanduc D (2011) Searching for an effective, safe and universal anti-HIV vaccine: finding the answer in just one short peptide. Self/nonself 2(1):49–54PubMedPubMedCentralCrossRef
222.
go back to reference Goldstein G, Chicca JJ 2nd (2010) A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 28(4):1008–1014PubMedCrossRef Goldstein G, Chicca JJ 2nd (2010) A universal anti-HIV-1 Tat epitope vaccine that is fully synthetic and self-adjuvanting. Vaccine 28(4):1008–1014PubMedCrossRef
223.
go back to reference Andresen BS, Vinner L, Tang S, Bragstad K, Kronborg G, Gerstoft J et al (2007) Characterization of near full-length genomes of HIV type 1 strains in Denmark: basis for a universal therapeutic vaccine. AIDS Res Hum Retroviruses 23(11):1442–1448PubMedCrossRef Andresen BS, Vinner L, Tang S, Bragstad K, Kronborg G, Gerstoft J et al (2007) Characterization of near full-length genomes of HIV type 1 strains in Denmark: basis for a universal therapeutic vaccine. AIDS Res Hum Retroviruses 23(11):1442–1448PubMedCrossRef
224.
go back to reference Paredes MI, Lunn SM, Famulare M, Frisbie LA, Painter I, Burstein R, et al (2022) Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study. medRxiv [Preprint]. 2022 Feb 16:2021.09.29.21264272. https://doi.org/10.1101/2021.09.29.21264272. Paredes MI, Lunn SM, Famulare M, Frisbie LA, Painter I, Burstein R, et al (2022) Associations between SARS-CoV-2 variants and risk of COVID-19 hospitalization among confirmed cases in Washington State: a retrospective cohort study. medRxiv [Preprint]. 2022 Feb 16:2021.09.29.21264272. https://​doi.​org/​10.​1101/​2021.​09.​29.​21264272.
226.
go back to reference Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS et al (2021) SARS-CoV-2 variants B1351 and P1 escape from neutralizing antibodies. Cell 184(9):2384–93.e12CrossRef Hoffmann M, Arora P, Groß R, Seidel A, Hörnich BF, Hahn AS et al (2021) SARS-CoV-2 variants B1351 and P1 escape from neutralizing antibodies. Cell 184(9):2384–93.e12CrossRef
227.
go back to reference Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184(9):2372–83.e9PubMedPubMedCentralCrossRef Garcia-Beltran WF, Lam EC, St Denis K, Nitido AD, Garcia ZH, Hauser BM et al (2021) Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell 184(9):2372–83.e9PubMedPubMedCentralCrossRef
228.
go back to reference Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ et al (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 10:14031 Tada T, Dcosta BM, Samanovic-Golden M, Herati RS, Cornelius A, Mulligan MJ et al (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv 10:14031
229.
go back to reference Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 586:567 Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE et al (2021) mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants. bioRxiv 586:567
230.
go back to reference Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al (2021) Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv [Preprint]. 2021 Sep 30:2021.06.28.21259420. doi: https://doi.org/10.1101/2021.06.28.21259420 Nasreen S, Chung H, He S, Brown KA, Gubbay JB, Buchan SA, et al (2021) Effectiveness of mRNA and ChAdOx1 COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. medRxiv [Preprint]. 2021 Sep 30:2021.06.28.21259420. doi: https://​doi.​org/​10.​1101/​2021.​06.​28.​21259420
231.
go back to reference Tada T, Zhou H, Samanovic MI, Dcosta BM, Cornelius A, Mulligan MJ et al (2021) Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants. BioRxiv 384:2187 Tada T, Zhou H, Samanovic MI, Dcosta BM, Cornelius A, Mulligan MJ et al (2021) Comparison of neutralizing antibody titers elicited by mRNA and adenoviral vector vaccine against SARS-CoV-2 variants. BioRxiv 384:2187
Metadata
Title
Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy
Authors
Amirmasoud Rayati Damavandi
Razieh Dowran
Sarah Al Sharif
Fatah Kashanchi
Reza Jafari
Publication date
01-06-2022
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 2-3/2022
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-022-00729-6

Other articles of this Issue 2-3/2022

Medical Microbiology and Immunology 2-3/2022 Go to the issue