Skip to main content
Top
Published in: Medical Microbiology and Immunology 4/2020

Open Access 01-08-2020 | Original Investigation

A role for tetraspanin proteins in regulating fusion induced by Burkholderia thailandensis

Authors: Atiga Elgawidi, Muslim Idan Mohsin, Fawwaz Ali, Amyleigh Watts, Peter N. Monk, Mark S. Thomas, Lynda J. Partridge

Published in: Medical Microbiology and Immunology | Issue 4/2020

Login to get access

Abstract

Burkholderia pseudomallei is the causative agent of melioidosis, a disease with high morbidity that is endemic in South East Asia and northern Australia. An unusual feature of the bacterium is its ability to induce multinucleated giant cell formation (MNGC), which appears to be related to bacterial pathogenicity. The mechanism of MNGC formation is not fully understood, but host cell factors as well as known bacterial virulence determinants are likely to contribute. Since members of the tetraspanin family of membrane proteins are involved in various types of cell:cell fusion, their role in MNGC formation induced by Burkholderia thailandensis, a mildly pathogenic species closely related to B. pseudomallei, was investigated. The effect of antibodies to tetraspanins CD9, CD81, and CD63 in MNGC formation induced by B. thailandensis in infected mouse J774.2 and RAW macrophage cell lines was assessed along with that of recombinant proteins corresponding to the large extracellular domain (EC2) of the tetraspanins. B. thailandensis-induced fusion was also examined in macrophages derived from CD9 null and corresponding WT mice, and in J774.2 macrophages over-expressing CD9. Antibodies to CD9 and CD81 promoted MNGC formation induced by B. thailandensis, whereas EC2 proteins of CD9, CD81, and CD63 inhibited MNGC formation. Enhanced MNGC formation was observed in CD9 null macrophages, whereas a decrease in MNGC formation was associated with overexpression of CD9. Overall our findings show that tetraspanins are involved in MNGC formation induced by B. thailandensis and by implication, B. pseudomallei, with CD9 and CD81 acting as negative regulators of this process.
Literature
1.
go back to reference Dance DA et al (1989) Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol 42(6):645–648PubMedPubMedCentralCrossRef Dance DA et al (1989) Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol 42(6):645–648PubMedPubMedCentralCrossRef
4.
go back to reference Ngauy V et al (2005) Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43(2):970–972PubMedPubMedCentralCrossRef Ngauy V et al (2005) Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 43(2):970–972PubMedPubMedCentralCrossRef
5.
go back to reference Stevens JM et al (2005) Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant. J Bacteriol 187(22):7857–7862PubMedPubMedCentralCrossRef Stevens JM et al (2005) Actin-binding proteins from Burkholderia mallei and Burkholderia thailandensis can functionally compensate for the actin-based motility defect of a Burkholderia pseudomallei bimA mutant. J Bacteriol 187(22):7857–7862PubMedPubMedCentralCrossRef
6.
7.
go back to reference Kespichayawattana W et al (2000) Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68(9):5377–5384PubMedPubMedCentralCrossRef Kespichayawattana W et al (2000) Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun 68(9):5377–5384PubMedPubMedCentralCrossRef
8.
go back to reference Wong KT, Puthucheary SD, Vadivelu J (1995) The histopathology of human melioidosis. Histopathology 26(1):51–55PubMedCrossRef Wong KT, Puthucheary SD, Vadivelu J (1995) The histopathology of human melioidosis. Histopathology 26(1):51–55PubMedCrossRef
9.
go back to reference Harley VS et al (1998) Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96(384):71–93PubMed Harley VS et al (1998) Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios 96(384):71–93PubMed
10.
go back to reference Wand ME et al (2011) Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11(1):11PubMedPubMedCentralCrossRef Wand ME et al (2011) Macrophage and Galleria mellonella infection models reflect the virulence of naturally occurring isolates of B. pseudomallei, B. thailandensis and B. oklahomensis. BMC Microbiol 11(1):11PubMedPubMedCentralCrossRef
11.
go back to reference Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82(4):1445–1452PubMedPubMedCentralCrossRef Schwarz S et al (2014) VgrG-5 is a Burkholderia type VI secretion system-exported protein required for multinucleated giant cell formation and virulence. Infect Immun 82(4):1445–1452PubMedPubMedCentralCrossRef
12.
go back to reference Toesca IJ, French CT, Miller JF (2014) The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 82(4):1436–1444PubMedPubMedCentralCrossRef Toesca IJ, French CT, Miller JF (2014) The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 82(4):1436–1444PubMedPubMedCentralCrossRef
13.
go back to reference Suparak S et al (2011) Burkholderia pseudomallei-induced cell fusion in U937 macrophages can be inhibited by monoclonal antibodies against host cell surface molecules. Microbes Infect 13(12–13):1006–1011PubMedCrossRef Suparak S et al (2011) Burkholderia pseudomallei-induced cell fusion in U937 macrophages can be inhibited by monoclonal antibodies against host cell surface molecules. Microbes Infect 13(12–13):1006–1011PubMedCrossRef
14.
go back to reference Charrin S et al (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648PubMed Charrin S et al (2014) Tetraspanins at a glance. J Cell Sci 127(Pt 17):3641–3648PubMed
15.
go back to reference Yanez-Mo M et al (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446PubMedCrossRef Yanez-Mo M et al (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446PubMedCrossRef
17.
go back to reference Rubinstein E et al (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17(2):254–263PubMedCrossRef Rubinstein E et al (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17(2):254–263PubMedCrossRef
18.
go back to reference Charrin S et al (2013) Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun 4:1674PubMedCrossRef Charrin S et al (2013) Normal muscle regeneration requires tight control of muscle cell fusion by tetraspanins CD9 and CD81. Nat Commun 4:1674PubMedCrossRef
19.
go back to reference Ishii M et al (2006) RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res 21(6):965–976PubMedCrossRef Ishii M et al (2006) RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. J Bone Miner Res 21(6):965–976PubMedCrossRef
21.
go back to reference Parthasarathy V et al (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127(2):237–248PubMedPubMedCentralCrossRef Parthasarathy V et al (2009) Distinct roles for tetraspanins CD9, CD63 and CD81 in the formation of multinucleated giant cells. Immunology 127(2):237–248PubMedPubMedCentralCrossRef
22.
go back to reference Hulme RS et al (2014) Distinct regions of the large extracellular domain of tetraspanin CD9 are involved in the control of human multinucleated giant cell formation. PLoS One 9(12):e116289PubMedPubMedCentralCrossRef Hulme RS et al (2014) Distinct regions of the large extracellular domain of tetraspanin CD9 are involved in the control of human multinucleated giant cell formation. PLoS One 9(12):e116289PubMedPubMedCentralCrossRef
23.
go back to reference Ho SH et al (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80(13):6487–6496PubMedPubMedCentralCrossRef Ho SH et al (2006) Recombinant extracellular domains of tetraspanin proteins are potent inhibitors of the infection of macrophages by human immunodeficiency virus type 1. J Virol 80(13):6487–6496PubMedPubMedCentralCrossRef
24.
go back to reference Monk PN, Partridge LJ (2012) Tetraspanins: gateways for infection. Infect Disord Drug Targets 12(1):4–17PubMedCrossRef Monk PN, Partridge LJ (2012) Tetraspanins: gateways for infection. Infect Disord Drug Targets 12(1):4–17PubMedCrossRef
25.
go back to reference Symeonides M et al (2014) Evidence showing that tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage. Viruses 6(3):1078–1090PubMedPubMedCentralCrossRef Symeonides M et al (2014) Evidence showing that tetraspanins inhibit HIV-1-induced cell-cell fusion at a post-hemifusion stage. Viruses 6(3):1078–1090PubMedPubMedCentralCrossRef
26.
go back to reference Lennings J et al (2019) Environmental and cellular factors affecting the localization of T6SS proteins in Burkholderia thailandensis. Int J Med Microbiol 309(6):151335PubMedCrossRef Lennings J et al (2019) Environmental and cellular factors affecting the localization of T6SS proteins in Burkholderia thailandensis. Int J Med Microbiol 309(6):151335PubMedCrossRef
27.
go back to reference Yu Y et al (2006) Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol 6:46PubMedPubMedCentralCrossRef Yu Y et al (2006) Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis. BMC Microbiol 6:46PubMedPubMedCentralCrossRef
28.
29.
go back to reference Le Naour F et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287(5451):319–321PubMedCrossRef Le Naour F et al (2000) Severely reduced female fertility in CD9-deficient mice. Science 287(5451):319–321PubMedCrossRef
30.
go back to reference Ha CT et al (2005) Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1. J Leukoc Biol 77(6):948–957PubMedCrossRef Ha CT et al (2005) Binding of pregnancy-specific glycoprotein 17 to CD9 on macrophages induces secretion of IL-10, IL-6, PGE2, and TGF-beta1. J Leukoc Biol 77(6):948–957PubMedCrossRef
31.
go back to reference Risinger JI et al (2014) Normal viability of Kai1/Cd82 deficient mice. Mol Carcinog 53(8):610–624PubMed Risinger JI et al (2014) Normal viability of Kai1/Cd82 deficient mice. Mol Carcinog 53(8):610–624PubMed
32.
go back to reference Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48(Pt 1):317–320PubMedCrossRef Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48(Pt 1):317–320PubMedCrossRef
33.
go back to reference Higginbottom A et al (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214PubMedCrossRef Higginbottom A et al (2003) Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun 311(1):208–214PubMedCrossRef
34.
go back to reference Caplan MJ, Kamsteeg EJ, Duffield A (2007) Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens 16(4):353–358PubMedCrossRef Caplan MJ, Kamsteeg EJ, Duffield A (2007) Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens 16(4):353–358PubMedCrossRef
36.
go back to reference Boddey JA et al (2007) The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cell Microbiol 9(2):514–531PubMedCrossRef Boddey JA et al (2007) The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cell Microbiol 9(2):514–531PubMedCrossRef
37.
go back to reference Higginbottom A et al (2000) Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology 99(4):546–552PubMedPubMedCentralCrossRef Higginbottom A et al (2000) Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology 99(4):546–552PubMedPubMedCentralCrossRef
38.
go back to reference Barreiro O et al (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7):2852–2861PubMedCrossRef Barreiro O et al (2005) Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood 105(7):2852–2861PubMedCrossRef
39.
go back to reference Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19(10):514–522PubMedCrossRef Helming L, Gordon S (2009) Molecular mediators of macrophage fusion. Trends Cell Biol 19(10):514–522PubMedCrossRef
40.
41.
go back to reference Fanaei M, Monk PN, Partridge LJ (2011) The role of tetraspanins in fusion. Biochem Soc Trans 39(2):524–528PubMedCrossRef Fanaei M, Monk PN, Partridge LJ (2011) The role of tetraspanins in fusion. Biochem Soc Trans 39(2):524–528PubMedCrossRef
42.
go back to reference Park SY, Yun Y, Kim IS (2012) CD36 is required for myoblast fusion during myogenic differentiation. Biochem Biophys Res Commun 427(4):705–710PubMedCrossRef Park SY, Yun Y, Kim IS (2012) CD36 is required for myoblast fusion during myogenic differentiation. Biochem Biophys Res Commun 427(4):705–710PubMedCrossRef
43.
go back to reference Huang W, Febbraio M, Silverstein RL (2011) CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein. PLoS One 6(12):e29092PubMedPubMedCentralCrossRef Huang W, Febbraio M, Silverstein RL (2011) CD9 tetraspanin interacts with CD36 on the surface of macrophages: a possible regulatory influence on uptake of oxidized low density lipoprotein. PLoS One 6(12):e29092PubMedPubMedCentralCrossRef
44.
go back to reference Kania JR, Kehat-Stadler T, Kupfer SR (1997) CD44 antibodies inhibit osteoclast formation. J Bone Miner Res 12(8):1155–1164PubMedCrossRef Kania JR, Kehat-Stadler T, Kupfer SR (1997) CD44 antibodies inhibit osteoclast formation. J Bone Miner Res 12(8):1155–1164PubMedCrossRef
46.
go back to reference de Vries TJ et al (2005) Effect of CD44 deficiency on in vitro and in vivo osteoclast formation. J Cell Biochem 94(5):954–966PubMedCrossRef de Vries TJ et al (2005) Effect of CD44 deficiency on in vitro and in vivo osteoclast formation. J Cell Biochem 94(5):954–966PubMedCrossRef
47.
go back to reference Le Naour F et al (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 5(5):845–857PubMedCrossRef Le Naour F et al (2006) Profiling of the tetraspanin web of human colon cancer cells. Mol Cell Proteomics 5(5):845–857PubMedCrossRef
48.
go back to reference Han X et al (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 275(48):37984–37992PubMedCrossRef Han X et al (2000) CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J Biol Chem 275(48):37984–37992PubMedCrossRef
50.
go back to reference Takahashi Y et al (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12(4):809–820PubMedPubMedCentralCrossRef Takahashi Y et al (2001) Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of beta1 integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell 12(4):809–820PubMedPubMedCentralCrossRef
Metadata
Title
A role for tetraspanin proteins in regulating fusion induced by Burkholderia thailandensis
Authors
Atiga Elgawidi
Muslim Idan Mohsin
Fawwaz Ali
Amyleigh Watts
Peter N. Monk
Mark S. Thomas
Lynda J. Partridge
Publication date
01-08-2020
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 4/2020
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-020-00670-6

Other articles of this Issue 4/2020

Medical Microbiology and Immunology 4/2020 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.