Skip to main content
Top
Published in: Medical Microbiology and Immunology 3-4/2019

01-08-2019 | Original Investigation

Function of the cargo sorting dileucine motif in a cytomegalovirus immune evasion protein

Authors: Annette Fink, Snježana Mikuličić, Franziska Blaum, Matthias J. Reddehase, Luise Florin, Niels A. W. Lemmermann

Published in: Medical Microbiology and Immunology | Issue 3-4/2019

Login to get access

Abstract

As an immune evasion mechanism, cytomegaloviruses (CMVs) have evolved proteins that interfere with cell surface trafficking of MHC class-I (MHC-I) molecules to tone down recognition by antiviral CD8 T cells. This interference can affect the trafficking of recently peptide-loaded MHC-I from the endoplasmic reticulum to the cell surface, thus modulating the presentation of viral peptides, as well as the recycling of pre-existing cell surface MHC-I, resulting in reduction of the level of overall MHC-I cell surface expression. Murine cytomegalovirus (mCMV) was paradigmatic in that it led to the discovery of this immune evasion strategy of CMVs. Members of its m02-m16 gene family code for type-I transmembrane glycoproteins, proven or predicted, most of which carry cargo sorting motifs in their cytoplasmic, C-terminal tail. For the m06 gene product m06 (gp48), the cargo has been identified as being MHC-I, which is linked by m06 to cellular adapter proteins AP-1A and AP-3A through the dileucine motif EPLARLL. Both APs are involved in trans-Golgi network (TGN) cargo sorting and, based on transfection studies, their engagement by the dileucine motif was proposed to be absolutely required to prevent MHC-I exposure at the cell surface. Here, we have tested this prediction in an infection system with the herein newly described recombinant virus mCMV-m06AA, in which the dileucine motif is destroyed by replacing EPLARLL with EPLARAA. This mutation has a phenotype in that the transition of m06-MHC-I complexes from early endosomes (EE) to late endosomes (LE)/lysosomes for degradation is blocked. Consistent with the binding of the MHC-I α-chain to the luminal domain of m06, the m06-mediated disposal of MHC-I did not require the β2m chain of mature MHC-I. Unexpectedly, however, disconnecting MHC-I cargo from AP-1A/3A by the motif mutation in m06 had no notable rescuing impact on overall cell surface MHC-I, though it resulted in some improvement of the presentation of viral antigenic peptides by recently peptide-loaded MHC-I. Thus, the current view on the mechanism by which m06 mediates immune evasion needs to be revised. While the cargo sorting motif is critically involved in the disposal of m06-bound MHC-I in the endosomal/lysosomal pathway at the stage of EE to LE transition, this motif-mediated disposal is not the critical step by which m06 causes immune evasion. We rather propose that engagement of AP-1A/3A by the cargo sorting motif in m06 routes the m06-MHC-I complexes into the endosomal pathway and thereby detracts them from the constitutive cell surface transport.
Literature
2.
go back to reference Fink A, Blaum F, Babic Cac M, Ebert S, Lemmermann NA, Reddehase MJ (2015) An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 ‘adapter adapter’ protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 204:383–394. https://doi.org/10.1007/s00430-015-0414-1 CrossRefPubMed Fink A, Blaum F, Babic Cac M, Ebert S, Lemmermann NA, Reddehase MJ (2015) An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 ‘adapter adapter’ protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 204:383–394. https://​doi.​org/​10.​1007/​s00430-015-0414-1 CrossRefPubMed
4.
go back to reference Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894CrossRefPubMed Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894CrossRefPubMed
12.
go back to reference Lemmermann NA, Fink A, Podlech J, Ebert S, Wilhelmi V, Böhm V, Holtappels R, Reddehase MJ (2012) Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 201:497–512. https://doi.org/10.1007/s00430-012-0257-y CrossRefPubMed Lemmermann NA, Fink A, Podlech J, Ebert S, Wilhelmi V, Böhm V, Holtappels R, Reddehase MJ (2012) Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 201:497–512. https://​doi.​org/​10.​1007/​s00430-012-0257-y CrossRefPubMed
13.
go back to reference Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816CrossRefPubMedPubMedCentral Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816CrossRefPubMedPubMedCentral
15.
go back to reference Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 192–214 Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II. Caister Academic Press, Norfolk, pp 192–214
17.
go back to reference Pinto A, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234CrossRefPubMed Pinto A, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234CrossRefPubMed
22.
go back to reference Reusch U, Bernhard O, Koszinowski UH, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761CrossRefPubMed Reusch U, Bernhard O, Koszinowski UH, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761CrossRefPubMed
23.
go back to reference Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94:14759–14763CrossRefPubMedPubMedCentral Messerle M, Crnkovic I, Hammerschmidt W, Ziegler H, Koszinowski UH (1997) Cloning and mutagenesis of a herpesvirus genome as an infectious bacterial artificial chromosome. Proc Natl Acad Sci USA 94:14759–14763CrossRefPubMedPubMedCentral
24.
go back to reference Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060CrossRefPubMedPubMedCentral Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060CrossRefPubMedPubMedCentral
25.
go back to reference Fink A, Lemmermann NA, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R (2012) Antigen presentation under the influence of ‘immune evasion’ proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:513–525. https://doi.org/10.1007/s00430-012-0256-z CrossRefPubMed Fink A, Lemmermann NA, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R (2012) Antigen presentation under the influence of ‘immune evasion’ proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:513–525. https://​doi.​org/​10.​1007/​s00430-012-0256-z CrossRefPubMed
26.
go back to reference Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology, vol 32. Immunology of infection. Academic Press, London, pp 493–525 Podlech J, Holtappels R, Grzimek NKA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology, vol 32. Immunology of infection. Academic Press, London, pp 493–525
27.
go back to reference Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987CrossRefPubMedPubMedCentral Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987CrossRefPubMedPubMedCentral
29.
go back to reference Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C (2018) Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol 19:453–463. https://doi.org/10.1038/s41590-018-0082-6 CrossRefPubMed Hammer Q, Rückert T, Borst EM, Dunst J, Haubner A, Durek P, Heinrich F, Gasparoni G, Babic M, Tomic A, Pietra G, Nienen M, Blau IW, Hofmann J, Na IK, Prinz I, Koenecke C, Hemmati P, Babel N, Arnold R, Walter J, Thurley K, Mashreghi MF, Messerle M, Romagnani C (2018) Peptide-specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol 19:453–463. https://​doi.​org/​10.​1038/​s41590-018-0082-6 CrossRefPubMed
30.
go back to reference Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology, vol 37. Immunology of infection. Academic Press, London, pp 369–420 Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology, vol 37. Immunology of infection. Academic Press, London, pp 369–420
32.
go back to reference Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534. https://doi.org/10.1099/vir.0.018580-0 CrossRefPubMed Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534. https://​doi.​org/​10.​1099/​vir.​0.​018580-0 CrossRefPubMed
35.
go back to reference Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164CrossRefPubMedPubMedCentral Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164CrossRefPubMedPubMedCentral
36.
go back to reference Böhm V, Simon CO, Podlech J, Seckert CK, Gendig G, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion pardox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650CrossRefPubMedPubMedCentral Böhm V, Simon CO, Podlech J, Seckert CK, Gendig G, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion pardox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650CrossRefPubMedPubMedCentral
38.
go back to reference Scheffer K, Popa-Wagner R, Florin L (2013) Isolation and characterization of pathogen-bearing endosomes enable analysis of endosomal escape and identification of new cellular cofactors of infection. In: Bailer SM, Lieber D (eds) Methods in molecular biology, vol 1064. Virus–host interactions. Humana Press, Totowa, pp 101–113. https://doi.org/10.1007/978-1-62703-601-6_7 CrossRef Scheffer K, Popa-Wagner R, Florin L (2013) Isolation and characterization of pathogen-bearing endosomes enable analysis of endosomal escape and identification of new cellular cofactors of infection. In: Bailer SM, Lieber D (eds) Methods in molecular biology, vol 1064. Virus–host interactions. Humana Press, Totowa, pp 101–113. https://​doi.​org/​10.​1007/​978-1-62703-601-6_​7 CrossRef
41.
go back to reference Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66CrossRefPubMed Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66CrossRefPubMed
42.
go back to reference Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296CrossRefPubMedPubMedCentral Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296CrossRefPubMedPubMedCentral
44.
go back to reference Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 172:729–738CrossRef Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 172:729–738CrossRef
Metadata
Title
Function of the cargo sorting dileucine motif in a cytomegalovirus immune evasion protein
Authors
Annette Fink
Snježana Mikuličić
Franziska Blaum
Matthias J. Reddehase
Luise Florin
Niels A. W. Lemmermann
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 3-4/2019
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-019-00604-x

Other articles of this Issue 3-4/2019

Medical Microbiology and Immunology 3-4/2019 Go to the issue