Skip to main content
Top
Published in: Medical Microbiology and Immunology 3-4/2018

01-08-2018 | Original Investigation

Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts

Authors: Anika Zilch, Christian Rien, Cynthia Weigel, Stefanie Huskobla, Brigitte Glück, Katrin Spengler, Andreas Sauerbrei, Regine Heller, Markus Gräler, Andreas Henke

Published in: Medical Microbiology and Immunology | Issue 3-4/2018

Login to get access

Abstract

The human cytomegalovirus (HCMV) is a common pathogen, which causes severe or even deadly diseases in immunocompromised patients. In addition, congenital HCMV infection represents a major health concern affecting especially the lung tissue of the susceptible individuals. Antivirals are a useful strategy to treat HCMV-caused diseases. However, all approved drugs target viral proteins but significant toxicity and an increasing resistance against these compounds have been observed. In infected cells, numerous host molecules have been identified to play important roles during HCMV replication. Among others, HCMV infection depends on the presence of bioactive sphingolipids. In this study, the role of sphingosine-1-phosphate (S1P) signaling in HCMV-infected human embryonal lung fibroblasts (HELF) was analyzed. Viral replication depended on the functional activity of sphingosine kinases (SK). During SK inhibition, addition of extracellular S1P restored HCMV replication. Moreover, neutralization of extracellular S1P by anti-S1P antibodies decreased HCMV replication as well. While the application of FTY720 as an functional antagonist of S1P receptor (S1PR)1,3−5 signaling did not reduce HCMV replication significantly, JTE-013, an inhibitor of S1PR2, decreased viral replication. Furthermore, inhibition of Rac-1 activity reduced HCMV replication, whereas inhibition of the Rac-1 effector protein Rac-1-activated kinase 1 (PAK1) had no influence. In general, targeting S1P-induced pathways, which are essential for a successful HCMV replication, may represent a valuable strategy to develop new antiviral drugs.
Literature
1.
go back to reference Fishman JA (2017) Infection in organ transplantation. Am J Transpl 17(4):856–879CrossRef Fishman JA (2017) Infection in organ transplantation. Am J Transpl 17(4):856–879CrossRef
2.
go back to reference Selvey LA, Lim WH, Boan P, Swaminathan R, Slimings C, Harrison AE, Chakera A (2017) Cytomegalovirus viraemia and mortality in renal transplant recipients in the era of antiviral prophylaxis. Lessons from the western Australian experience. BMC Infect Dis 17(1):501CrossRefPubMedPubMedCentral Selvey LA, Lim WH, Boan P, Swaminathan R, Slimings C, Harrison AE, Chakera A (2017) Cytomegalovirus viraemia and mortality in renal transplant recipients in the era of antiviral prophylaxis. Lessons from the western Australian experience. BMC Infect Dis 17(1):501CrossRefPubMedPubMedCentral
3.
go back to reference de Maar EF, Verschuuren EA, Harmsen MC, The TH, van Son WJ (2003) Pulmonary involvement during cytomegalovirus infection in immunosuppressed patients. Transpl Infect Dis 5(3):112–120CrossRefPubMed de Maar EF, Verschuuren EA, Harmsen MC, The TH, van Son WJ (2003) Pulmonary involvement during cytomegalovirus infection in immunosuppressed patients. Transpl Infect Dis 5(3):112–120CrossRefPubMed
4.
go back to reference Travi G, Pergam SA (2014) Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 29(4):200–212CrossRefPubMed Travi G, Pergam SA (2014) Cytomegalovirus pneumonia in hematopoietic stem cell recipients. J Intensive Care Med 29(4):200–212CrossRefPubMed
5.
go back to reference Ison MG, Fishman JA (2005) Cytomegalovirus pneumonia in transplant recipients. Clin Chest Med 26(4):691–705 viii.CrossRefPubMed Ison MG, Fishman JA (2005) Cytomegalovirus pneumonia in transplant recipients. Clin Chest Med 26(4):691–705 viii.CrossRefPubMed
6.
go back to reference Murph JR, Souza IE, Dawson JD, Benson P, Petheram SJ, Pfab D, Gregg A, O’Neill ME, Zimmerman B, Bale JF Jr (1998) Epidemiology of congenital cytomegalovirus infection: maternal risk factors and molecular analysis of cytomegalovirus strains. Am J Epidemiol 147(10):940–947CrossRefPubMed Murph JR, Souza IE, Dawson JD, Benson P, Petheram SJ, Pfab D, Gregg A, O’Neill ME, Zimmerman B, Bale JF Jr (1998) Epidemiology of congenital cytomegalovirus infection: maternal risk factors and molecular analysis of cytomegalovirus strains. Am J Epidemiol 147(10):940–947CrossRefPubMed
7.
go back to reference Cannon MJ (2009) Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol 46(4):S6–10PubMed Cannon MJ (2009) Congenital cytomegalovirus (CMV) epidemiology and awareness. J Clin Virol 46(4):S6–10PubMed
8.
go back to reference Bissinger AL, Sinzger C, Kaiserling E, Jahn G (2002) Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67(2):200–206CrossRefPubMed Bissinger AL, Sinzger C, Kaiserling E, Jahn G (2002) Human cytomegalovirus as a direct pathogen: correlation of multiorgan involvement and cell distribution with clinical and pathological findings in a case of congenital inclusion disease. J Med Virol 67(2):200–206CrossRefPubMed
9.
go back to reference Gabrielli L, Bonasoni MP, Lazzarotto T, Lega S, Santini D, Foschini MP, Guerra B, Baccolini F, Piccirilli G, Chiereghin A, Petrisli E, Gardini G, Lanari M, Landini MP (2009) Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol 46(Suppl 4):S16–21CrossRefPubMed Gabrielli L, Bonasoni MP, Lazzarotto T, Lega S, Santini D, Foschini MP, Guerra B, Baccolini F, Piccirilli G, Chiereghin A, Petrisli E, Gardini G, Lanari M, Landini MP (2009) Histological findings in foetuses congenitally infected by cytomegalovirus. J Clin Virol 46(Suppl 4):S16–21CrossRefPubMed
10.
go back to reference Dulal K, Cheng T, Yang L, Wang W, Huang Y, Silver B, Selariu A, Xie C, Wang D, Espeseth A, Lin Y, Wen L, Xia N, Fu TM, Zhu H (2016) Functional analysis of human cytomegalovirus UL/b’ region using SCID-hu mouse model. J Med Virol 88(8):1417–1426CrossRefPubMed Dulal K, Cheng T, Yang L, Wang W, Huang Y, Silver B, Selariu A, Xie C, Wang D, Espeseth A, Lin Y, Wen L, Xia N, Fu TM, Zhu H (2016) Functional analysis of human cytomegalovirus UL/b’ region using SCID-hu mouse model. J Med Virol 88(8):1417–1426CrossRefPubMed
11.
go back to reference Maidji E, Kosikova G, Joshi P, Stoddart CA (2012) Impaired surfactant production by alveolar epithelial cells in a SCID-hu lung mouse model of congenital human cytomegalovirus infection. J Virol 86(23):12795–12805CrossRefPubMedPubMedCentral Maidji E, Kosikova G, Joshi P, Stoddart CA (2012) Impaired surfactant production by alveolar epithelial cells in a SCID-hu lung mouse model of congenital human cytomegalovirus infection. J Virol 86(23):12795–12805CrossRefPubMedPubMedCentral
12.
go back to reference Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67(9):5360–5366PubMedPubMedCentral Balthesen M, Messerle M, Reddehase MJ (1993) Lungs are a major organ site of cytomegalovirus latency and recurrence. J Virol 67(9):5360–5366PubMedPubMedCentral
13.
go back to reference Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55(2):264–273PubMedPubMedCentral Reddehase MJ, Weiland F, Munch K, Jonjic S, Luske A, Koszinowski UH (1985) Interstitial murine cytomegalovirus pneumonia after irradiation: characterization of cells that limit viral replication during established infection of the lungs. J Virol 55(2):264–273PubMedPubMedCentral
14.
go back to reference Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74(16):7496–7507CrossRefPubMedPubMedCentral Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74(16):7496–7507CrossRefPubMedPubMedCentral
15.
go back to reference Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76(Pt 4):741–750CrossRefPubMed Sinzger C, Grefte A, Plachter B, Gouw AS, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76(Pt 4):741–750CrossRefPubMed
16.
go back to reference Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83PubMed Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83PubMed
17.
go back to reference Timpone JG, Yimen M, Cox S, Teran R, Ajluni S, Goldstein D, Fishbein T, Kumar PN, Matsumoto C (2016) Resistant cytomegalovirus in intestinal and multivisceral transplant recipients. Transpl Infect Dis 18(2):202–209CrossRefPubMed Timpone JG, Yimen M, Cox S, Teran R, Ajluni S, Goldstein D, Fishbein T, Kumar PN, Matsumoto C (2016) Resistant cytomegalovirus in intestinal and multivisceral transplant recipients. Transpl Infect Dis 18(2):202–209CrossRefPubMed
18.
go back to reference El Chaer F, Shah DP, Chemaly RF (2016) How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 128(23):2624–2636CrossRefPubMedPubMedCentral El Chaer F, Shah DP, Chemaly RF (2016) How I treat resistant cytomegalovirus infection in hematopoietic cell transplantation recipients. Blood 128(23):2624–2636CrossRefPubMedPubMedCentral
19.
go back to reference Hanson KE, Swaminathan S (2015) Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 10(10):1545–1548CrossRefPubMed Hanson KE, Swaminathan S (2015) Cytomegalovirus antiviral drug resistance: future prospects for prevention, detection and management. Future Microbiol 10(10):1545–1548CrossRefPubMed
20.
go back to reference Kagele D, Rossetto CC, Tarrant MT, Pari GS (2012) Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. Virology 424(2):106–114CrossRefPubMedPubMedCentral Kagele D, Rossetto CC, Tarrant MT, Pari GS (2012) Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. Virology 424(2):106–114CrossRefPubMedPubMedCentral
21.
go back to reference Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2(12):e132CrossRefPubMedPubMedCentral Munger J, Bajad SU, Coller HA, Shenk T, Rabinowitz JD (2006) Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog 2(12):e132CrossRefPubMedPubMedCentral
22.
go back to reference Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186CrossRefPubMedPubMedCentral Munger J, Bennett BD, Parikh A, Feng XJ, McArdle J, Rabitz HA, Shenk T, Rabinowitz JD (2008) Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy. Nat Biotechnol 26(10):1179–1186CrossRefPubMedPubMedCentral
23.
go back to reference McArdle J, Moorman NJ, Munger J (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8(1):e1002502CrossRefPubMedPubMedCentral McArdle J, Moorman NJ, Munger J (2012) HCMV targets the metabolic stress response through activation of AMPK whose activity is important for viral replication. PLoS Pathog 8(1):e1002502CrossRefPubMedPubMedCentral
24.
go back to reference Schneider-Schaulies J, Schneider-Schaulies S (2015) Sphingolipids in viral infection. Biol Chem 396(6–7):585–595PubMed Schneider-Schaulies J, Schneider-Schaulies S (2015) Sphingolipids in viral infection. Biol Chem 396(6–7):585–595PubMed
26.
go back to reference Thuy AV, Reimann CM, Hemdan NY, Graler MH (2014) Sphingosine 1-phosphate in blood: function, metabolism, and fate. Cell Physiol Biochem 34(1):158–171CrossRefPubMed Thuy AV, Reimann CM, Hemdan NY, Graler MH (2014) Sphingosine 1-phosphate in blood: function, metabolism, and fate. Cell Physiol Biochem 34(1):158–171CrossRefPubMed
27.
go back to reference Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585(2–3):193–201CrossRefPubMed Maceyka M, Payne SG, Milstien S, Spiegel S (2002) Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585(2–3):193–201CrossRefPubMed
29.
go back to reference Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE (2016) Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol 6:218CrossRefPubMedPubMedCentral Rodriguez YI, Campos LE, Castro MG, Aladhami A, Oskeritzian CA, Alvarez SE (2016) Sphingosine-1 phosphate: a new modulator of immune plasticity in the tumor microenvironment. Front Oncol 6:218CrossRefPubMedPubMedCentral
30.
go back to reference Machesky NJ, Zhang G, Raghavan B, Zimmerman P, Kelly SL, Merrill AH Jr, Waldman WJ, Van Brocklyn JR, Trgovcich J (2008) Human cytomegalovirus regulates bioactive sphingolipids. J Biol Chem 283(38):26148–26160CrossRefPubMedPubMedCentral Machesky NJ, Zhang G, Raghavan B, Zimmerman P, Kelly SL, Merrill AH Jr, Waldman WJ, Van Brocklyn JR, Trgovcich J (2008) Human cytomegalovirus regulates bioactive sphingolipids. J Biol Chem 283(38):26148–26160CrossRefPubMedPubMedCentral
31.
go back to reference Sobel K, Menyhart K, Killer N, Renault B, Bauer Y, Studer R, Steiner B, Bolli MH, Nayler O, Gatfield J (2013) Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J Biol Chem 288(21):14839–14851CrossRefPubMedPubMedCentral Sobel K, Menyhart K, Killer N, Renault B, Bauer Y, Studer R, Steiner B, Bolli MH, Nayler O, Gatfield J (2013) Sphingosine 1-phosphate (S1P) receptor agonists mediate pro-fibrotic responses in normal human lung fibroblasts via S1P2 and S1P3 receptors and Smad-independent signaling. J Biol Chem 288(21):14839–14851CrossRefPubMedPubMedCentral
32.
go back to reference Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102(50):18153–18158CrossRefPubMed Wang D, Shenk T (2005) Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc Natl Acad Sci USA 102(50):18153–18158CrossRefPubMed
33.
34.
go back to reference Wilkinson GW, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang EC, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ (2015) Human cytomegalovirus: taking the strain. Med Microbiol Immunol 204(3):273–284CrossRefPubMedPubMedCentral Wilkinson GW, Davison AJ, Tomasec P, Fielding CA, Aicheler R, Murrell I, Seirafian S, Wang EC, Weekes M, Lehner PJ, Wilkie GS, Stanton RJ (2015) Human cytomegalovirus: taking the strain. Med Microbiol Immunol 204(3):273–284CrossRefPubMedPubMedCentral
35.
go back to reference Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7(5):e1001344CrossRefPubMedPubMedCentral Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog 7(5):e1001344CrossRefPubMedPubMedCentral
36.
go back to reference Renzette N, Kowalik TF, Jensen JD (2016) On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity. Mol Ecol 25(1):403–413CrossRefPubMed Renzette N, Kowalik TF, Jensen JD (2016) On the relative roles of background selection and genetic hitchhiking in shaping human cytomegalovirus genetic diversity. Mol Ecol 25(1):403–413CrossRefPubMed
37.
go back to reference Kawabori M, Kacimi R, Karliner JS, Yenari MA (2013) Sphingolipids in cardiovascular and cerebrovascular systems: pathological implications and potential therapeutic targets. World J Cardiol 5(4):75–86CrossRefPubMedPubMedCentral Kawabori M, Kacimi R, Karliner JS, Yenari MA (2013) Sphingolipids in cardiovascular and cerebrovascular systems: pathological implications and potential therapeutic targets. World J Cardiol 5(4):75–86CrossRefPubMedPubMedCentral
38.
go back to reference Ford Siltz LA, Viktorova EG, Zhang B, Kouiavskaia D, Dragunsky E, Chumakov K, Isaacs L, Belov GA (2014) New small-molecule inhibitors effectively blocking picornavirus replication. J Virol 88(19):11091–11107CrossRefPubMedPubMedCentral Ford Siltz LA, Viktorova EG, Zhang B, Kouiavskaia D, Dragunsky E, Chumakov K, Isaacs L, Belov GA (2014) New small-molecule inhibitors effectively blocking picornavirus replication. J Virol 88(19):11091–11107CrossRefPubMedPubMedCentral
39.
go back to reference Lou Z, Sun Y, Rao Z (2014) Current progress in antiviral strategies. Trends Pharmacol Sci 35(2):86–102CrossRefPubMed Lou Z, Sun Y, Rao Z (2014) Current progress in antiviral strategies. Trends Pharmacol Sci 35(2):86–102CrossRefPubMed
40.
go back to reference Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276(1):40–47CrossRefPubMed Heller R, Unbehaun A, Schellenberg B, Mayer B, Werner-Felmayer G, Werner ER (2001) L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J Biol Chem 276(1):40–47CrossRefPubMed
41.
go back to reference Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, Viollet B, Carling D, Heller R (2010) Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem 285(14):10638–10652CrossRefPubMedPubMedCentral Stahmann N, Woods A, Spengler K, Heslegrave A, Bauer R, Krause S, Viollet B, Carling D, Heller R (2010) Activation of AMP-activated protein kinase by vascular endothelial growth factor mediates endothelial angiogenesis independently of nitric-oxide synthase. J Biol Chem 285(14):10638–10652CrossRefPubMedPubMedCentral
42.
go back to reference Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84(3):570–573CrossRefPubMed Rowe WP, Huebner RJ, Gilmore LK, Parrott RH, Ward TG (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture. Proc Soc Exp Biol Med 84(3):570–573CrossRefPubMed
43.
go back to reference Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GW (2010) Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120(9):3191–3208CrossRefPubMedPubMedCentral Stanton RJ, Baluchova K, Dargan DJ, Cunningham C, Sheehy O, Seirafian S, McSharry BP, Neale ML, Davies JA, Tomasec P, Davison AJ, Wilkinson GW (2010) Reconstruction of the complete human cytomegalovirus genome in a BAC reveals RL13 to be a potent inhibitor of replication. J Clin Invest 120(9):3191–3208CrossRefPubMedPubMedCentral
44.
go back to reference Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89(Pt 2):359–368CrossRefPubMed Sinzger C, Hahn G, Digel M, Katona R, Sampaio KL, Messerle M, Hengel H, Koszinowski U, Brune W, Adler B (2008) Cloning and sequencing of a highly productive, endotheliotropic virus strain derived from human cytomegalovirus TB40/E. J Gen Virol 89(Pt 2):359–368CrossRefPubMed
45.
go back to reference Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152CrossRefPubMed Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 11:127–152CrossRefPubMed
46.
go back to reference Ammer E, Nietzsche S, Rien C, Kuhnl A, Mader T, Heller R, Sauerbrei A, Henke A (2015) The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 204(6):635–645CrossRefPubMed Ammer E, Nietzsche S, Rien C, Kuhnl A, Mader T, Heller R, Sauerbrei A, Henke A (2015) The anti-obesity drug orlistat reveals anti-viral activity. Med Microbiol Immunol 204(6):635–645CrossRefPubMed
47.
go back to reference Carrizzo A, Forte M, Lembo M, Formisano L, Puca AA, Vecchione C (2014) Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr Drug Targets 15(13):1231–1246CrossRefPubMed Carrizzo A, Forte M, Lembo M, Formisano L, Puca AA, Vecchione C (2014) Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr Drug Targets 15(13):1231–1246CrossRefPubMed
48.
go back to reference Richerioux N, Blondeau C, Wiedemann A, Remy S, Vautherot JF, Denesvre C (2012) Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s Disease Virus. PLoS One 7(8):e44072CrossRefPubMedPubMedCentral Richerioux N, Blondeau C, Wiedemann A, Remy S, Vautherot JF, Denesvre C (2012) Rho-ROCK and Rac-PAK signaling pathways have opposing effects on the cell-to-cell spread of Marek’s Disease Virus. PLoS One 7(8):e44072CrossRefPubMedPubMedCentral
49.
go back to reference Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101(20):7618–7623CrossRefPubMed Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101(20):7618–7623CrossRefPubMed
50.
go back to reference Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31CrossRefPubMed Kumar R, Sanawar R, Li X, Li F (2017) Structure, biochemistry, and biology of PAK kinases. Gene 605:20–31CrossRefPubMed
51.
go back to reference Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15(4):322–331CrossRefPubMedPubMedCentral Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J, Peterson JR (2008) An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15(4):322–331CrossRefPubMedPubMedCentral
52.
go back to reference Sinzger C, Jahn G (1996) Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39(5–6):302–319CrossRefPubMed Sinzger C, Jahn G (1996) Human cytomegalovirus cell tropism and pathogenesis. Intervirology 39(5–6):302–319CrossRefPubMed
53.
go back to reference Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L (2000) Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 251(1):19–26CrossRefPubMed Melendez AJ, Carlos-Dias E, Gosink M, Allen JM, Takacs L (2000) Human sphingosine kinase: molecular cloning, functional characterization and tissue distribution. Gene 251(1):19–26CrossRefPubMed
54.
55.
go back to reference Miccheli A, Ricciolini R, Lagana A, Piccolella E, Conti F (1991) Modulation of the free sphingosine levels in Epstein Barr virus transformed human B lymphocytes by phorbol dibutyrate. Biochim Biophys Acta 1095(1):90–92CrossRefPubMed Miccheli A, Ricciolini R, Lagana A, Piccolella E, Conti F (1991) Modulation of the free sphingosine levels in Epstein Barr virus transformed human B lymphocytes by phorbol dibutyrate. Biochim Biophys Acta 1095(1):90–92CrossRefPubMed
56.
go back to reference Yang TC, Lai CC, Shiu SL, Chuang PH, Tzou BC, Lin YY, Tsai FJ, Lin CW (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12(8–9):643–651CrossRefPubMed Yang TC, Lai CC, Shiu SL, Chuang PH, Tzou BC, Lin YY, Tsai FJ, Lin CW (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12(8–9):643–651CrossRefPubMed
57.
go back to reference Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C (2014) Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13(1):154–164CrossRefPubMed Qin Z, Dai L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C (2014) Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13(1):154–164CrossRefPubMed
58.
go back to reference Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659CrossRefPubMedPubMedCentral Yamane D, Zahoor MA, Mohamed YM, Azab W, Kato K, Tohya Y, Akashi H (2009) Inhibition of sphingosine kinase by bovine viral diarrhea virus NS3 is crucial for efficient viral replication and cytopathogenesis. J Biol Chem 284(20):13648–13659CrossRefPubMedPubMedCentral
59.
go back to reference Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407CrossRefPubMed Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407CrossRefPubMed
60.
go back to reference Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279(5356):1552–1555CrossRefPubMed Lee MJ, Van Brocklyn JR, Thangada S, Liu CH, Hand AR, Menzeleev R, Spiegel S, Hla T (1998) Sphingosine-1-phosphate as a ligand for the G protein-coupled receptor EDG-1. Science 279(5356):1552–1555CrossRefPubMed
61.
go back to reference Aarthi JJ, Darendeliler MA, Pushparaj PN (2011) Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 90(7):841–854CrossRefPubMed Aarthi JJ, Darendeliler MA, Pushparaj PN (2011) Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 90(7):841–854CrossRefPubMed
63.
go back to reference Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D (2016) Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharmacol 7:167CrossRefPubMedPubMedCentral Blankenbach KV, Schwalm S, Pfeilschifter J, Meyer Zu Heringdorf D (2016) Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharmacol 7:167CrossRefPubMedPubMedCentral
64.
go back to reference Tong S, Tian J, Wang H, Huang Z, Yu M, Sun L, Liu R, Liao M, Ning Z (2013) H9N2 avian influenza infection altered expression pattern of sphiogosine-1-phosphate receptor 1 in BALB/c mice. Virol J 10:296CrossRefPubMedPubMedCentral Tong S, Tian J, Wang H, Huang Z, Yu M, Sun L, Liu R, Liao M, Ning Z (2013) H9N2 avian influenza infection altered expression pattern of sphiogosine-1-phosphate receptor 1 in BALB/c mice. Virol J 10:296CrossRefPubMedPubMedCentral
65.
go back to reference Wang X, Yu Y, Li M, Yu Y, Liu G, Xie Y, Liu Y, Yang X, Zou Y, Ge J, Chen R (2017) Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. Exp Mol Pathol 103(2):210–217CrossRefPubMed Wang X, Yu Y, Li M, Yu Y, Liu G, Xie Y, Liu Y, Yang X, Zou Y, Ge J, Chen R (2017) Sphingosine 1-phosphate alleviates Coxsackievirus B3-induced myocarditis by increasing invariant natural killer T cells. Exp Mol Pathol 103(2):210–217CrossRefPubMed
66.
go back to reference Nagahashi M, Takabe K, Terracina KP, Soma D, Hirose Y, Kobayashi T, Matsuda Y, Wakai T (2014) Sphingosine-1-phosphate transporters as targets for cancer therapy. Biomed Res Int 2014:651727 Nagahashi M, Takabe K, Terracina KP, Soma D, Hirose Y, Kobayashi T, Matsuda Y, Wakai T (2014) Sphingosine-1-phosphate transporters as targets for cancer therapy. Biomed Res Int 2014:651727
67.
68.
go back to reference Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, Zeng F, Ren Z, Qian C, Liu G, Kitazato K, Wang Y (2012) Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 86(16):8440–8451CrossRefPubMedPubMedCentral Xiang Y, Zheng K, Ju H, Wang S, Pei Y, Ding W, Chen Z, Wang Q, Qiu X, Zhong M, Zeng F, Ren Z, Qian C, Liu G, Kitazato K, Wang Y (2012) Cofilin 1-mediated biphasic F-actin dynamics of neuronal cells affect herpes simplex virus 1 infection and replication. J Virol 86(16):8440–8451CrossRefPubMedPubMedCentral
70.
go back to reference Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Morsdorf D (2006) Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87(Pt 12):3483–3494CrossRefPubMed Hoppe S, Schelhaas M, Jaeger V, Liebig T, Petermann P, Knebel-Morsdorf D (2006) Early herpes simplex virus type 1 infection is dependent on regulated Rac1/Cdc42 signalling in epithelial MDCKII cells. J Gen Virol 87(Pt 12):3483–3494CrossRefPubMed
71.
go back to reference Petermann P, Haase I, Knebel-Morsdorf D (2009) Impact of Rac1 and Cdc42 signaling during early herpes simplex virus type 1 infection of keratinocytes. J Virol 83(19):9759–9772CrossRefPubMedPubMedCentral Petermann P, Haase I, Knebel-Morsdorf D (2009) Impact of Rac1 and Cdc42 signaling during early herpes simplex virus type 1 infection of keratinocytes. J Virol 83(19):9759–9772CrossRefPubMedPubMedCentral
72.
go back to reference Murata T, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y (2000) Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5(12):1017–1027CrossRefPubMed Murata T, Goshima F, Daikoku T, Takakuwa H, Nishiyama Y (2000) Expression of herpes simplex virus type 2 US3 affects the Cdc42/Rac pathway and attenuates c-Jun N-terminal kinase activation. Genes Cells 5(12):1017–1027CrossRefPubMed
73.
go back to reference Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20(3):160–169CrossRefPubMed Van den Broeke C, Radu M, Chernoff J, Favoreel HW (2010) An emerging role for p21-activated kinases (Paks) in viral infections. Trends Cell Biol 20(3):160–169CrossRefPubMed
74.
go back to reference Jacob T, Van den Broeke C, van Troys M, Waterschoot D, Ampe C, Favoreel HW (2013) Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton. J Virol 87(7):4121–4126CrossRefPubMedPubMedCentral Jacob T, Van den Broeke C, van Troys M, Waterschoot D, Ampe C, Favoreel HW (2013) Alphaherpesviral US3 kinase induces cofilin dephosphorylation to reorganize the actin cytoskeleton. J Virol 87(7):4121–4126CrossRefPubMedPubMedCentral
75.
go back to reference Zheng K, Xiang Y, Wang X, Wang Q, Zhong M, Wang S, Wang X, Fan J, Kitazato K, Wang Y (2014) Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. MBio 5(1):e00958–00913CrossRefPubMedPubMedCentral Zheng K, Xiang Y, Wang X, Wang Q, Zhong M, Wang S, Wang X, Fan J, Kitazato K, Wang Y (2014) Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. MBio 5(1):e00958–00913CrossRefPubMedPubMedCentral
76.
go back to reference Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9(11):846–859CrossRefPubMed Iden S, Collard JG (2008) Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9(11):846–859CrossRefPubMed
77.
go back to reference Carr JM, Mahalingam S, Bonder CS, Pitson SM (2013) Sphingosine kinase 1 in viral infections. Rev Med Virol 23(2):73–84CrossRefPubMed Carr JM, Mahalingam S, Bonder CS, Pitson SM (2013) Sphingosine kinase 1 in viral infections. Rev Med Virol 23(2):73–84CrossRefPubMed
Metadata
Title
Influence of sphingosine-1-phosphate signaling on HCMV replication in human embryonal lung fibroblasts
Authors
Anika Zilch
Christian Rien
Cynthia Weigel
Stefanie Huskobla
Brigitte Glück
Katrin Spengler
Andreas Sauerbrei
Regine Heller
Markus Gräler
Andreas Henke
Publication date
01-08-2018
Publisher
Springer Berlin Heidelberg
Published in
Medical Microbiology and Immunology / Issue 3-4/2018
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-018-0543-4

Other articles of this Issue 3-4/2018

Medical Microbiology and Immunology 3-4/2018 Go to the issue