Skip to main content
Top
Published in: Medical Microbiology and Immunology 3/2013

01-06-2013 | Review

Thriving within the host: Candida spp. interactions with phagocytic cells

Authors: Pedro Miramón, Lydia Kasper, Bernhard Hube

Published in: Medical Microbiology and Immunology | Issue 3/2013

Login to get access

Abstract

Certain Candida spp. (e.g. C. albicans, C. tropicalis, C. parapsilosis and C. glabrata) are not only well-adapted fungal commensals of humans, but are also able to cause superficial mucosal infections or even systemic disease. Professional phagocytes (neutrophils, macrophages and dendritic cells) constitute the first line of defence against Candida spp. Here, we review the interactions of phagocytes with pathogenic Candida spp., focusing on macrophages and neutrophils. We discuss the mechanisms involved in recognition, uptake and killing of these fungi. We go on to analyse the cellular responses of these yeasts towards phagocyte-imposed stresses, including metabolic flexibility, robust oxidative stress response and ability to cope with nitrosative stress. Finally, we address strategies that allow these opportunistic pathogens to thrive within the host, evading and escaping from the phagocyte attack.
Literature
1.
go back to reference Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662PubMedCrossRef Butler G, Rasmussen MD, Lin MF, Santos MA, Sakthikumar S et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662PubMedCrossRef
2.
go back to reference Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6:863–874PubMedCrossRef Mavor AL, Thewes S, Hube B (2005) Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets 6:863–874PubMedCrossRef
4.
go back to reference Mochon AB, Ye J, Kayala MA, Wingard JR, Clancy CJ et al (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 6:e1000827PubMedCrossRef Mochon AB, Ye J, Kayala MA, Wingard JR, Clancy CJ et al (2010) Serological profiling of a Candida albicans protein microarray reveals permanent host-pathogen interplay and stage-specific responses during candidemia. PLoS Pathog 6:e1000827PubMedCrossRef
5.
go back to reference Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA (2010) Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell 9:1075–1086PubMedCrossRef Rosenbach A, Dignard D, Pierce JV, Whiteway M, Kumamoto CA (2010) Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot Cell 9:1075–1086PubMedCrossRef
6.
go back to reference Moyes DL, Naglik JR (2011) Mucosal immunity and Candida albicans infection. Clin Dev Immunol 2011:346307PubMedCrossRef Moyes DL, Naglik JR (2011) Mucosal immunity and Candida albicans infection. Clin Dev Immunol 2011:346307PubMedCrossRef
7.
go back to reference Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346PubMedCrossRef Perlroth J, Choi B, Spellberg B (2007) Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol 45:321–346PubMedCrossRef
8.
go back to reference Moran G, Coleman D, Sullivan D (2012) An Introduction to the Medically Important Candida species. In: Calderone RA, Clancy CJ (eds) Candida and candidiasis, 2nd edn. ASM Press, Washington, DC Moran G, Coleman D, Sullivan D (2012) An Introduction to the Medically Important Candida species. In: Calderone RA, Clancy CJ (eds) Candida and candidiasis, 2nd edn. ASM Press, Washington, DC
9.
go back to reference Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35PubMedCrossRef Koh AY, Kohler JR, Coggshall KT, Van Rooijen N, Pier GB (2008) Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog 4:e35PubMedCrossRef
10.
go back to reference Pasqualotto AC, Nedel WL, Machado TS, Severo LC (2006) Risk factors and outcome for nosocomial breakthrough candidaemia. J Infect 52:216–222PubMedCrossRef Pasqualotto AC, Nedel WL, Machado TS, Severo LC (2006) Risk factors and outcome for nosocomial breakthrough candidaemia. J Infect 52:216–222PubMedCrossRef
11.
12.
go back to reference Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324PubMedCrossRef Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324PubMedCrossRef
13.
go back to reference Moran GP, Coleman DC, Sullivan DJ (2012) Candida albicans versus Candida dubliniensis: why is C. albicans more pathogenic? Int J Microbiol 2012:205921PubMed Moran GP, Coleman DC, Sullivan DJ (2012) Candida albicans versus Candida dubliniensis: why is C. albicans more pathogenic? Int J Microbiol 2012:205921PubMed
14.
go back to reference Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K et al (2010) Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses 53:221–226PubMedCrossRef Yoshijima Y, Murakami K, Kayama S, Liu D, Hirota K et al (2010) Effect of substrate surface hydrophobicity on the adherence of yeast and hyphal Candida. Mycoses 53:221–226PubMedCrossRef
16.
go back to reference Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE 6:e17046PubMedCrossRef Wächtler B, Wilson D, Haedicke K, Dalle F, Hube B (2011) From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS ONE 6:e17046PubMedCrossRef
17.
go back to reference d’Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–470PubMedCrossRef d’Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7:465–470PubMedCrossRef
18.
go back to reference Ganguly S, Mitchell AP (2011) Mucosal biofilms of Candida albicans. Curr Opin Microbiol 14:380–385PubMedCrossRef Ganguly S, Mitchell AP (2011) Mucosal biofilms of Candida albicans. Curr Opin Microbiol 14:380–385PubMedCrossRef
19.
go back to reference Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H et al (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848PubMedCrossRef Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H et al (2012) A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 8:e1002848PubMedCrossRef
20.
go back to reference Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, et al (2012) Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis 206(12):1936–45 Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, et al (2012) Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis 206(12):1936–45
21.
go back to reference Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828PubMedCrossRef Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK et al (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828PubMedCrossRef
22.
go back to reference Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926PubMedCrossRef Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6:915–926PubMedCrossRef
23.
go back to reference Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377PubMedCrossRef Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377PubMedCrossRef
24.
go back to reference Stehr F, Felk A, Gacser A, Kretschmar M, Mahnss B et al (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4:401–408PubMedCrossRef Stehr F, Felk A, Gacser A, Kretschmar M, Mahnss B et al (2004) Expression analysis of the Candida albicans lipase gene family during experimental infections and in patient samples. FEMS Yeast Res 4:401–408PubMedCrossRef
25.
go back to reference Benjamin DK Jr, Stoll BJ, Fanaroff AA, McDonald SA, Oh W et al (2006) Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 117:84–92PubMedCrossRef Benjamin DK Jr, Stoll BJ, Fanaroff AA, McDonald SA, Oh W et al (2006) Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 117:84–92PubMedCrossRef
26.
go back to reference van Asbeck EC, Clemons KV, Stevens DA (2009) Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit Rev Microbiol 35:283–309PubMedCrossRef van Asbeck EC, Clemons KV, Stevens DA (2009) Candida parapsilosis: a review of its epidemiology, pathogenesis, clinical aspects, typing and antimicrobial susceptibility. Crit Rev Microbiol 35:283–309PubMedCrossRef
27.
go back to reference Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625PubMedCrossRef Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625PubMedCrossRef
28.
go back to reference Kothavade RJ, Kura MM, Valand AG, Panthaki MH (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880PubMedCrossRef Kothavade RJ, Kura MM, Valand AG, Panthaki MH (2010) Candida tropicalis: its prevalence, pathogenicity and increasing resistance to fluconazole. J Med Microbiol 59:873–880PubMedCrossRef
29.
go back to reference Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL (2010) Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 51:561–570PubMedCrossRef Nucci M, Queiroz-Telles F, Tobon AM, Restrepo A, Colombo AL (2010) Epidemiology of opportunistic fungal infections in Latin America. Clin Infect Dis 51:561–570PubMedCrossRef
30.
go back to reference Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRef Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S et al (2004) Genome evolution in yeasts. Nature 430:35–44PubMedCrossRef
31.
go back to reference Lee I, Fishman NO, Zaoutis TE, Morales KH, Weiner MG et al (2009) Risk factors for fluconazole-resistant Candida glabrata bloodstream infections. Arch Intern Med 169:379–383PubMedCrossRef Lee I, Fishman NO, Zaoutis TE, Morales KH, Weiner MG et al (2009) Risk factors for fluconazole-resistant Candida glabrata bloodstream infections. Arch Intern Med 169:379–383PubMedCrossRef
32.
go back to reference Fradin C, De Groot P, MacCallum D, Schaller M, Klis F et al (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415PubMedCrossRef Fradin C, De Groot P, MacCallum D, Schaller M, Klis F et al (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415PubMedCrossRef
33.
go back to reference van ‘t Wout JW, Linde I, Leijh PC, van Furth R (1988) Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur J Clin Microbiol Infect Dis 7:736–741PubMedCrossRef van ‘t Wout JW, Linde I, Leijh PC, van Furth R (1988) Contribution of granulocytes and monocytes to resistance against experimental disseminated Candida albicans infection. Eur J Clin Microbiol Infect Dis 7:736–741PubMedCrossRef
34.
go back to reference Svobodova E, Staib P, Losse J, Hennicke F, Barz D et al (2012) Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. J Immunol 189:2502–2511PubMedCrossRef Svobodova E, Staib P, Losse J, Hennicke F, Barz D et al (2012) Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. J Immunol 189:2502–2511PubMedCrossRef
35.
go back to reference Kowanko IC, Ferrante A, Harvey DP, Carman KL (1991) Granulocyte-macrophage colony-stimulating factor augments neutrophil killing of Torulopsis glabrata and stimulates neutrophil respiratory burst and degranulation. Clin Exp Immunol 83:225–230PubMedCrossRef Kowanko IC, Ferrante A, Harvey DP, Carman KL (1991) Granulocyte-macrophage colony-stimulating factor augments neutrophil killing of Torulopsis glabrata and stimulates neutrophil respiratory burst and degranulation. Clin Exp Immunol 83:225–230PubMedCrossRef
36.
go back to reference Lindemann RA, Franker CK (1991) Phagocyte-mediated killing of Candida tropicalis. Mycopathologia 113:81–87PubMedCrossRef Lindemann RA, Franker CK (1991) Phagocyte-mediated killing of Candida tropicalis. Mycopathologia 113:81–87PubMedCrossRef
37.
go back to reference Linden JR, Maccani MA, Laforce-Nesbitt SS, Bliss JM (2010) High efficiency opsonin-independent phagocytosis of Candida parapsilosis by human neutrophils. Med Mycol 48:355–364PubMedCrossRef Linden JR, Maccani MA, Laforce-Nesbitt SS, Bliss JM (2010) High efficiency opsonin-independent phagocytosis of Candida parapsilosis by human neutrophils. Med Mycol 48:355–364PubMedCrossRef
38.
go back to reference Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774PubMedCrossRef Shi C, Pamer EG (2011) Monocyte recruitment during infection and inflammation. Nat Rev Immunol 11:762–774PubMedCrossRef
39.
go back to reference Romagnoli G, Nisini R, Chiani P, Mariotti S, Teloni R et al (2004) The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol 75:117–126PubMedCrossRef Romagnoli G, Nisini R, Chiani P, Mariotti S, Teloni R et al (2004) The interaction of human dendritic cells with yeast and germ-tube forms of Candida albicans leads to efficient fungal processing, dendritic cell maturation, and acquisition of a Th1 response-promoting function. J Leukoc Biol 75:117–126PubMedCrossRef
40.
go back to reference Netea MG, Gijzen K, Coolen N, Verschueren I, Figdor C et al (2004) Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes Infect 6:985–989PubMedCrossRef Netea MG, Gijzen K, Coolen N, Verschueren I, Figdor C et al (2004) Human dendritic cells are less potent at killing Candida albicans than both monocytes and macrophages. Microbes Infect 6:985–989PubMedCrossRef
41.
go back to reference Ramirez-Ortiz ZG, Means TK (2012) The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 3:635–646 Ramirez-Ortiz ZG, Means TK (2012) The role of dendritic cells in the innate recognition of pathogenic fungi (A. fumigatus, C. neoformans and C. albicans). Virulence 3:635–646
42.
go back to reference Jacobsen ID, Brunke S, Seider K, Schwarzmuller T, Firon A et al (2010) Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 78:1066–1077PubMedCrossRef Jacobsen ID, Brunke S, Seider K, Schwarzmuller T, Firon A et al (2010) Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 78:1066–1077PubMedCrossRef
43.
go back to reference Cheng SC, Joosten LA, Kullberg BJ, Netea MG (2012) Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 80:1304–1313PubMedCrossRef Cheng SC, Joosten LA, Kullberg BJ, Netea MG (2012) Interplay between Candida albicans and the mammalian innate host defense. Infect Immun 80:1304–1313PubMedCrossRef
44.
go back to reference Qian Q, Jutila MA, Van Rooijen N, Cutler JE (1994) Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 152:5000–5008PubMed Qian Q, Jutila MA, Van Rooijen N, Cutler JE (1994) Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J Immunol 152:5000–5008PubMed
45.
go back to reference Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1):1–8PubMed Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1):1–8PubMed
46.
go back to reference Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78PubMedCrossRef Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78PubMedCrossRef
47.
go back to reference Sato K, Yang XL, Yudate T, Chung JS, Wu J et al (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854–38866PubMedCrossRef Sato K, Yang XL, Yudate T, Chung JS, Wu J et al (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281:38854–38866PubMedCrossRef
48.
go back to reference Jouault T, El Abed-El BehiM, Martinez-Esparza M, Breuilh L, Trinel PA et al (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687PubMed Jouault T, El Abed-El BehiM, Martinez-Esparza M, Breuilh L, Trinel PA et al (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177:4679–4687PubMed
49.
go back to reference Netea MG, Gow NA, Munro CA, Bates S, Collins C et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650PubMedCrossRef Netea MG, Gow NA, Munro CA, Bates S, Collins C et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116:1642–1650PubMedCrossRef
50.
go back to reference Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P et al (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188:165–172PubMedCrossRef Jouault T, Ibata-Ombetta S, Takeuchi O, Trinel PA, Sacchetti P et al (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188:165–172PubMedCrossRef
51.
go back to reference Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM et al (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8:e1002578PubMedCrossRef Lewis LE, Bain JM, Lowes C, Gillespie C, Rudkin FM et al (2012) Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog 8:e1002578PubMedCrossRef
52.
go back to reference Sheth CC, Hall R, Lewis L, Brown AJ, Odds FC et al (2011) Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Med Mycol 49:513–524PubMed Sheth CC, Hall R, Lewis L, Brown AJ, Odds FC et al (2011) Glycosylation status of the C. albicans cell wall affects the efficiency of neutrophil phagocytosis and killing but not cytokine signaling. Med Mycol 49:513–524PubMed
53.
go back to reference McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM et al (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658PubMedCrossRef McKenzie CG, Koser U, Lewis LE, Bain JM, Mora-Montes HM et al (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658PubMedCrossRef
54.
go back to reference Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L et al (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882PubMed Taylor PR, Brown GD, Reid DM, Willment JA, Martinez-Pomares L et al (2002) The beta-glucan receptor, dectin-1, is predominantly expressed on the surface of cells of the monocyte/macrophage and neutrophil lineages. J Immunol 169:3876–3882PubMed
55.
go back to reference Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL et al (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412PubMedCrossRef Brown GD, Taylor PR, Reid DM, Willment JA, Williams DL et al (2002) Dectin-1 is a major beta-glucan receptor on macrophages. J Exp Med 196:407–412PubMedCrossRef
56.
go back to reference Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL et al (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA 108:14270–14275PubMedCrossRef Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL et al (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci USA 108:14270–14275PubMedCrossRef
57.
go back to reference Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB et al (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18:679–685PubMedCrossRef Bugarcic A, Hitchens K, Beckhouse AG, Wells CA, Ashman RB et al (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18:679–685PubMedCrossRef
58.
go back to reference Kasperkovitz PV, Khan NS, Tam JM, Mansour MK, Davids PJ et al (2011) Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79:4858–4867PubMedCrossRef Kasperkovitz PV, Khan NS, Tam JM, Mansour MK, Davids PJ et al (2011) Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79:4858–4867PubMedCrossRef
59.
go back to reference Biondo C, Malara A, Costa A, Signorino G, Cardile F et al (2012) Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 42:2632–2643PubMedCrossRef Biondo C, Malara A, Costa A, Signorino G, Cardile F et al (2012) Recognition of fungal RNA by TLR7 has a nonredundant role in host defense against experimental candidiasis. Eur J Immunol 42:2632–2643PubMedCrossRef
60.
go back to reference Herre J, Marshall AS, Caron E, Edwards AD, Williams DL et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045PubMedCrossRef Herre J, Marshall AS, Caron E, Edwards AD, Williams DL et al (2004) Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. Blood 104:4038–4045PubMedCrossRef
61.
go back to reference Heinsbroek SE, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD et al (2008) Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 4:e1000218PubMedCrossRef Heinsbroek SE, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD et al (2008) Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 4:e1000218PubMedCrossRef
62.
go back to reference Romani L, Montagnoli C, Bozza S, Perruccio K, Spreca A et al (2004) The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 16:149–161PubMedCrossRef Romani L, Montagnoli C, Bozza S, Perruccio K, Spreca A et al (2004) The exploitation of distinct recognition receptors in dendritic cells determines the full range of host immune relationships with Candida albicans. Int Immunol 16:149–161PubMedCrossRef
63.
go back to reference Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B et al (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33:532–538PubMedCrossRef Cambi A, Gijzen K, de Vries JM, Torensma R, Joosten B et al (2003) The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur J Immunol 33:532–538PubMedCrossRef
64.
go back to reference Brouwer N, Dolman KM, van Houdt M, Sta M, Roos D et al (2008) Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding. J Immunol 180:4124–4132PubMed Brouwer N, Dolman KM, van Houdt M, Sta M, Roos D et al (2008) Mannose-binding lectin (MBL) facilitates opsonophagocytosis of yeasts but not of bacteria despite MBL binding. J Immunol 180:4124–4132PubMed
65.
go back to reference Li D, Dong B, Tong Z, Wang Q, Liu W et al (2012) MBL-mediated opsonophagocytosis of Candida albicans by human neutrophils Is coupled with intracellular dectin-1-triggered ros production. PLoS ONE 7:e50589PubMedCrossRef Li D, Dong B, Tong Z, Wang Q, Liu W et al (2012) MBL-mediated opsonophagocytosis of Candida albicans by human neutrophils Is coupled with intracellular dectin-1-triggered ros production. PLoS ONE 7:e50589PubMedCrossRef
66.
go back to reference Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67PubMedCrossRef Rubin-Bejerano I, Abeijon C, Magnelli P, Grisafi P, Fink GR (2007) Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2:55–67PubMedCrossRef
67.
go back to reference Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB et al (2007) Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2. J Immunol 178:2038–2046PubMed Soloviev DA, Fonzi WA, Sentandreu R, Pluskota E, Forsyth CB et al (2007) Identification of pH-regulated antigen 1 released from Candida albicans as the major ligand for leukocyte integrin alphaMbeta2. J Immunol 178:2038–2046PubMed
68.
go back to reference Soloviev DA, Jawhara S, Fonzi WA (2011) Regulation of innate immune response to Candida albicans infections by alphaMbeta2-Pra1p interaction. Infect Immun 79:1546–1558PubMedCrossRef Soloviev DA, Jawhara S, Fonzi WA (2011) Regulation of innate immune response to Candida albicans infections by alphaMbeta2-Pra1p interaction. Infect Immun 79:1546–1558PubMedCrossRef
69.
go back to reference Jawhara S, Pluskota E, Verbovetskiy D, Skomorovska-Prokvolit O, Plow EF et al (2012) Integrin alpha(X)beta(2) is a leukocyte receptor for Candida albicans and is essential for protection against fungal infections. J Immunol 189:2468–2477PubMedCrossRef Jawhara S, Pluskota E, Verbovetskiy D, Skomorovska-Prokvolit O, Plow EF et al (2012) Integrin alpha(X)beta(2) is a leukocyte receptor for Candida albicans and is essential for protection against fungal infections. J Immunol 189:2468–2477PubMedCrossRef
70.
go back to reference Kuhn DM, Vyas VK (2012) The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 12:398–414PubMedCrossRef Kuhn DM, Vyas VK (2012) The Candida glabrata adhesin Epa1p causes adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res 12:398–414PubMedCrossRef
71.
go back to reference Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649PubMedCrossRef Swanson JA (2008) Shaping cups into phagosomes and macropinosomes. Nat Rev Mol Cell Biol 9:639–649PubMedCrossRef
72.
go back to reference Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704PubMed Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704PubMed
73.
go back to reference Newman SL, Bhugra B, Holly A, Morris RE (2005) Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect Immun 73:770–777PubMedCrossRef Newman SL, Bhugra B, Holly A, Morris RE (2005) Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect Immun 73:770–777PubMedCrossRef
74.
75.
go back to reference Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489PubMedCrossRef Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A (2012) Neutrophil function: from mechanisms to disease. Annu Rev Immunol 30:459–489PubMedCrossRef
76.
go back to reference Segal BH, Grimm MJ, Khan AN, Han W, Blackwell TS (2012) Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53:72–80PubMedCrossRef Segal BH, Grimm MJ, Khan AN, Han W, Blackwell TS (2012) Regulation of innate immunity by NADPH oxidase. Free Radic Biol Med 53:72–80PubMedCrossRef
77.
go back to reference Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832PubMedCrossRef Fang FC (2004) Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2:820–832PubMedCrossRef
79.
go back to reference Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281:39860–39869PubMedCrossRef Winterbourn CC, Hampton MB, Livesey JH, Kettle AJ (2006) Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J Biol Chem 281:39860–39869PubMedCrossRef
80.
go back to reference Donini M, Zenaro E, Tamassia N, Dusi S (2007) NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Eur J Immunol 37:1194–1203PubMedCrossRef Donini M, Zenaro E, Tamassia N, Dusi S (2007) NADPH oxidase of human dendritic cells: role in Candida albicans killing and regulation by interferons, dectin-1 and CD206. Eur J Immunol 37:1194–1203PubMedCrossRef
81.
go back to reference Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F et al (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836PubMed Aratani Y, Koyama H, Nyui S, Suzuki K, Kura F et al (1999) Severe impairment in early host defense against Candida albicans in mice deficient in myeloperoxidase. Infect Immun 67:1828–1836PubMed
82.
go back to reference Sasada M, Johnston RB Jr (1980) Macrophage microbicidal activity. Correlation between phagocytosis-associated oxidative metabolism and the killing of Candida by macrophages. J Exp Med 152:85–98PubMedCrossRef Sasada M, Johnston RB Jr (1980) Macrophage microbicidal activity. Correlation between phagocytosis-associated oxidative metabolism and the killing of Candida by macrophages. J Exp Med 152:85–98PubMedCrossRef
84.
go back to reference Vázquez-Torres A, Jones-Carson J, Balish E (1996) Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect Immun 64:3127–3133PubMed Vázquez-Torres A, Jones-Carson J, Balish E (1996) Peroxynitrite contributes to the candidacidal activity of nitric oxide-producing macrophages. Infect Immun 64:3127–3133PubMed
85.
go back to reference Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRef Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y et al (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535PubMedCrossRef
86.
go back to reference Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8:668–676PubMedCrossRef Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8:668–676PubMedCrossRef
87.
go back to reference Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639PubMedCrossRef Urban CF, Ermert D, Schmid M, Abu-Abed U, Goosmann C et al (2009) Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 5:e1000639PubMedCrossRef
88.
go back to reference Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012PubMedCrossRef Rubin-Bejerano I, Fraser I, Grisafi P, Fink GR (2003) Phagocytosis by neutrophils induces an amino acid deprivation response in Saccharomyces cerevisiae and Candida albicans. Proc Natl Acad Sci USA 100:11007–11012PubMedCrossRef
89.
go back to reference Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C et al (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543PubMedCrossRef Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C et al (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47:1523–1543PubMedCrossRef
90.
go back to reference Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C et al (2007) Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6:460–478PubMed Fernández-Arenas E, Cabezón V, Bermejo C, Arroyo J, Nombela C et al (2007) Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6:460–478PubMed
91.
go back to reference Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA 104:7628–7633PubMedCrossRef Kaur R, Ma B, Cormack BP (2007) A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata. Proc Natl Acad Sci USA 104:7628–7633PubMedCrossRef
92.
go back to reference Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R (2012) Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 8:e1002863PubMedCrossRef Rai MN, Balusu S, Gorityala N, Dandu L, Kaur R (2012) Functional genomic analysis of Candida glabrata-macrophage interaction: role of chromatin remodeling in virulence. PLoS Pathog 8:e1002863PubMedCrossRef
93.
go back to reference Seider K, Brunke S, Schild L, Jablonowski N, Wilson D et al (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187:3072–3086PubMedCrossRef Seider K, Brunke S, Schild L, Jablonowski N, Wilson D et al (2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187:3072–3086PubMedCrossRef
94.
go back to reference Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286PubMedCrossRef Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286PubMedCrossRef
95.
go back to reference Wozniok I, Hornbach A, Schmitt C, Frosch M, Einsele H et al (2008) Induction of ERK-kinase signalling triggers morphotype-specific killing of Candida albicans filaments by human neutrophils. Cell Microbiol 10:807–820PubMedCrossRef Wozniok I, Hornbach A, Schmitt C, Frosch M, Einsele H et al (2008) Induction of ERK-kinase signalling triggers morphotype-specific killing of Candida albicans filaments by human neutrophils. Cell Microbiol 10:807–820PubMedCrossRef
96.
go back to reference Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H et al (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2:e00055–e00011 Vylkova S, Carman AJ, Danhof HA, Collette JR, Zhou H et al (2011) The fungal pathogen Candida albicans autoinduces hyphal morphogenesis by raising extracellular pH. MBio 2:e00055–e00011
97.
go back to reference Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087PubMedCrossRef Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087PubMedCrossRef
98.
go back to reference Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ (2007) Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol Microbiol 66:915–929PubMedCrossRef Moran GP, MacCallum DM, Spiering MJ, Coleman DC, Sullivan DJ (2007) Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis. Mol Microbiol 66:915–929PubMedCrossRef
99.
go back to reference Calcagno AM, Bignell E, Warn P, Jones MD, Denning DW et al (2003) Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol 50:1309–1318PubMedCrossRef Calcagno AM, Bignell E, Warn P, Jones MD, Denning DW et al (2003) Candida glabrata STE12 is required for wild-type levels of virulence and nitrogen starvation induced filamentation. Mol Microbiol 50:1309–1318PubMedCrossRef
100.
go back to reference Otto V, Howard DH (1976) Further studies on the intracellular behavior of Torulopsis glabrata. Infect Immun 14:433–438PubMed Otto V, Howard DH (1976) Further studies on the intracellular behavior of Torulopsis glabrata. Infect Immun 14:433–438PubMed
101.
go back to reference Barelle CJ, Priest CL, MacCallum DM, Gow NA, Odds FC et al (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971PubMedCrossRef Barelle CJ, Priest CL, MacCallum DM, Gow NA, Odds FC et al (2006) Niche-specific regulation of central metabolic pathways in a fungal pathogen. Cell Microbiol 8:961–971PubMedCrossRef
102.
go back to reference Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJ et al (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE 7:e52850PubMedCrossRef Miramón P, Dunker C, Windecker H, Bohovych IM, Brown AJ et al (2012) Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress. PLoS ONE 7:e52850PubMedCrossRef
103.
go back to reference Nguyen LN, Trofa D, Nosanchuk JD (2009) Fatty acid synthase impacts the pathobiology of Candida parapsilosis in vitro and during mammalian infection. PLoS ONE 4:e8421PubMedCrossRef Nguyen LN, Trofa D, Nosanchuk JD (2009) Fatty acid synthase impacts the pathobiology of Candida parapsilosis in vitro and during mammalian infection. PLoS ONE 4:e8421PubMedCrossRef
104.
go back to reference Gacser A, Trofa D, Schafer W, Nosanchuk JD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058PubMedCrossRef Gacser A, Trofa D, Schafer W, Nosanchuk JD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058PubMedCrossRef
105.
go back to reference Nagy I, Filkor K, Nemeth T, Hamari Z, Vagvolgyi C et al (2011) In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiol 11:122PubMedCrossRef Nagy I, Filkor K, Nemeth T, Hamari Z, Vagvolgyi C et al (2011) In vitro interactions of Candida parapsilosis wild type and lipase deficient mutants with human monocyte derived dendritic cells. BMC Microbiol 11:122PubMedCrossRef
106.
go back to reference Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL et al (2009) Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 77:1596–1605PubMedCrossRef Ghosh S, Navarathna DH, Roberts DD, Cooper JT, Atkin AL et al (2009) Arginine-induced germ tube formation in Candida albicans is essential for escape from murine macrophage line RAW 264.7. Infect Immun 77:1596–1605PubMedCrossRef
107.
go back to reference Jiménez-López C, Collette JR, Brothers KM, Shepardson KM, Cramer RA et al (2012) Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 12(1):91–100 Jiménez-López C, Collette JR, Brothers KM, Shepardson KM, Cramer RA et al (2012) Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species. Eukaryot Cell 12(1):91–100
108.
go back to reference Biswas K, Morschhauser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669PubMedCrossRef Biswas K, Morschhauser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669PubMedCrossRef
109.
go back to reference Palmer GE, Kelly MN, Sturtevant JE (2007) Autophagy in the pathogen Candida albicans. Microbiology 153:51–58PubMedCrossRef Palmer GE, Kelly MN, Sturtevant JE (2007) Autophagy in the pathogen Candida albicans. Microbiology 153:51–58PubMedCrossRef
110.
go back to reference Roetzer A, Gratz N, Kovarik P, Schuller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12:199–216PubMedCrossRef Roetzer A, Gratz N, Kovarik P, Schuller C (2010) Autophagy supports Candida glabrata survival during phagocytosis. Cell Microbiol 12:199–216PubMedCrossRef
111.
go back to reference Nevitt T, Thiele DJ (2011) Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 7:e1001322PubMedCrossRef Nevitt T, Thiele DJ (2011) Host iron withholding demands siderophore utilization for Candida glabrata to survive macrophage killing. PLoS Pathog 7:e1001322PubMedCrossRef
112.
go back to reference Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190PubMedCrossRef Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell 15:4179–4190PubMedCrossRef
113.
go back to reference Smith DA, Morgan BA, Quinn J (2010) Stress signalling to fungal stress-activated protein kinase pathways. FEMS Microbiol Lett 306:1–8PubMedCrossRef Smith DA, Morgan BA, Quinn J (2010) Stress signalling to fungal stress-activated protein kinase pathways. FEMS Microbiol Lett 306:1–8PubMedCrossRef
114.
go back to reference Wang Y, Cao YY, Jia XM, Cao YB, Gao PH et al (2006) Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 40:1201–1209PubMedCrossRef Wang Y, Cao YY, Jia XM, Cao YB, Gao PH et al (2006) Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 40:1201–1209PubMedCrossRef
115.
go back to reference Znaidi S, Barker KS, Weber S, Alarco AM, Liu TT et al (2009) Identification of the Candida albicans Cap1p regulon. Eukaryot Cell 8:806–820PubMedCrossRef Znaidi S, Barker KS, Weber S, Alarco AM, Liu TT et al (2009) Identification of the Candida albicans Cap1p regulon. Eukaryot Cell 8:806–820PubMedCrossRef
116.
go back to reference Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J (2007) Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol 9:1647–1659PubMedCrossRef Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J (2007) Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol 9:1647–1659PubMedCrossRef
117.
go back to reference Cuéllar-Cruz M, Briones-Martin-del-Campo M, Canas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814–825PubMedCrossRef Cuéllar-Cruz M, Briones-Martin-del-Campo M, Canas-Villamar I, Montalvo-Arredondo J, Riego-Ruiz L et al (2008) High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell 7:814–825PubMedCrossRef
118.
go back to reference Kaloriti D, Tillmann A, Cook E, Jacobsen M, You T et al (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50(7):699–709 Kaloriti D, Tillmann A, Cook E, Jacobsen M, You T et al (2012) Combinatorial stresses kill pathogenic Candida species. Med Mycol 50(7):699–709
119.
go back to reference Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D et al (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69:603–620PubMedCrossRef Roetzer A, Gregori C, Jennings AM, Quintin J, Ferrandon D et al (2008) Candida glabrata environmental stress response involves Saccharomyces cerevisiae Msn2/4 orthologous transcription factors. Mol Microbiol 69:603–620PubMedCrossRef
120.
go back to reference Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS et al (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713PubMed Hwang CS, Rhie GE, Oh JH, Huh WK, Yim HS et al (2002) Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148:3705–3713PubMed
121.
go back to reference Chaves GM, Bates S, MacCallum DM, Odds FC (2007) Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model. Genet Mol Res 6:1051–1063PubMed Chaves GM, Bates S, MacCallum DM, Odds FC (2007) Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model. Genet Mol Res 6:1051–1063PubMed
122.
go back to reference Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99PubMedCrossRef Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99PubMedCrossRef
123.
go back to reference Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467PubMedCrossRef Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467PubMedCrossRef
124.
go back to reference Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S et al (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157:2297–2307PubMedCrossRef Heilmann CJ, Sorgo AG, Siliakus AR, Dekker HL, Brul S et al (2011) Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Microbiology 157:2297–2307PubMedCrossRef
125.
go back to reference Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K (2008) C. albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71:240–252PubMedCrossRef Frohner IE, Bourgeois C, Yatsyk K, Majer O, Kuchler K (2008) C. albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol Microbiol 71:240–252PubMedCrossRef
126.
go back to reference Nakagawa Y, Kanbe T, Mizuguchi I (2003) Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol Immunol 47:395–403PubMed Nakagawa Y, Kanbe T, Mizuguchi I (2003) Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol Immunol 47:395–403PubMed
127.
go back to reference Enjalbert B, MacCallum DM, Odds FC, Brown AJ (2007) Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun 75:2143–2151PubMedCrossRef Enjalbert B, MacCallum DM, Odds FC, Brown AJ (2007) Niche-specific activation of the oxidative stress response by the pathogenic fungus Candida albicans. Infect Immun 75:2143–2151PubMedCrossRef
128.
go back to reference Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66:1953–1961PubMed Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD (1998) Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect Immun 66:1953–1961PubMed
129.
go back to reference Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735PubMedCrossRef Avery AM, Avery SV (2001) Saccharomyces cerevisiae expresses three phospholipid hydroperoxide glutathione peroxidases. J Biol Chem 276:33730–33735PubMedCrossRef
130.
go back to reference Avery AM, Willetts SA, Avery SV (2004) Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J Biol Chem 279:46652–46658PubMedCrossRef Avery AM, Willetts SA, Avery SV (2004) Genetic dissection of the phospholipid hydroperoxidase activity of yeast gpx3 reveals its functional importance. J Biol Chem 279:46652–46658PubMedCrossRef
131.
go back to reference Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K et al (2011) Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157:484–495PubMedCrossRef Yadav AK, Desai PR, Rai MN, Kaur R, Ganesan K et al (2011) Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Microbiology 157:484–495PubMedCrossRef
132.
go back to reference da Silva DantasA, Patterson MJ, Smith DA, Maccallum DM, Erwig LP et al (2010) Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 30:4550–4563CrossRef da Silva DantasA, Patterson MJ, Smith DA, Maccallum DM, Erwig LP et al (2010) Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol Cell Biol 30:4550–4563CrossRef
133.
go back to reference Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T et al (2007) Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 13:384–394PubMedCrossRef Martínez-Esparza M, Aguinaga A, González-Párraga P, García-Peñarrubia P, Jouault T et al (2007) Role of trehalose in resistance to macrophage killing: study with a tps1/tps1 trehalose-deficient mutant of Candida albicans. Clin Microbiol Infect 13:384–394PubMedCrossRef
134.
go back to reference Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S et al (2012) Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS ONE 7:e38584PubMedCrossRef Mayer FL, Wilson D, Jacobsen ID, Miramón P, Slesiona S et al (2012) Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans. PLoS ONE 7:e38584PubMedCrossRef
135.
go back to reference Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E et al (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585:319–327PubMedCrossRef Roetzer A, Klopf E, Gratz N, Marcet-Houben M, Hiller E et al (2011) Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett 585:319–327PubMedCrossRef
136.
go back to reference Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826PubMedCrossRef Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826PubMedCrossRef
137.
go back to reference Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q et al (2004) Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell 3:715–723PubMedCrossRef Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q et al (2004) Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell 3:715–723PubMedCrossRef
138.
go back to reference Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA et al (2008) CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell 7:268–278PubMedCrossRef Chiranand W, McLeod I, Zhou H, Lynn JJ, Vega LA et al (2008) CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans. Eukaryot Cell 7:268–278PubMedCrossRef
139.
go back to reference Sellam A, Tebbji F, Whiteway M, Nantel A (2012) A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans. PLoS ONE 7:e43956PubMedCrossRef Sellam A, Tebbji F, Whiteway M, Nantel A (2012) A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans. PLoS ONE 7:e43956PubMedCrossRef
140.
go back to reference Pereira HA, Tsyshevskaya-Hoover I, Hinsley H, Logan S, Nguyen M et al (2010) Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophil-derived protein, CAP37. Med Mycol 48:263–272PubMedCrossRef Pereira HA, Tsyshevskaya-Hoover I, Hinsley H, Logan S, Nguyen M et al (2010) Candidacidal activity of synthetic peptides based on the antimicrobial domain of the neutrophil-derived protein, CAP37. Med Mycol 48:263–272PubMedCrossRef
141.
go back to reference den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG et al (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695CrossRef den Hertog AL, van Marle J, van Veen HA, Van’t Hof W, Bolscher JG et al (2005) Candidacidal effects of two antimicrobial peptides: histatin 5 causes small membrane defects, but LL-37 causes massive disruption of the cell membrane. Biochem J 388:689–695CrossRef
142.
go back to reference Andrés MT, Viejo-Díaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+ -channel-mediated K+ efflux. Antimicrob Agents Chemother 52:4081–4088PubMedCrossRef Andrés MT, Viejo-Díaz M, Fierro JF (2008) Human lactoferrin induces apoptosis-like cell death in Candida albicans: critical role of K+ -channel-mediated K+ efflux. Antimicrob Agents Chemother 52:4081–4088PubMedCrossRef
143.
go back to reference Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227PubMedCrossRef Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4:e1000227PubMedCrossRef
144.
go back to reference Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117PubMedCrossRef Gantner BN, Simmons RM, Canavera SJ, Akira S, Underhill DM (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197:1107–1117PubMedCrossRef
145.
go back to reference Dennehy KM, Willment JA, Williams DL, Brown GD (2009) Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur J Immunol 39:1379–1386PubMedCrossRef Dennehy KM, Willment JA, Williams DL, Brown GD (2009) Reciprocal regulation of IL-23 and IL-12 following co-activation of Dectin-1 and TLR signaling pathways. Eur J Immunol 39:1379–1386PubMedCrossRef
146.
go back to reference Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA et al (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651PubMedCrossRef Crowe JD, Sievwright IK, Auld GC, Moore NR, Gow NA et al (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651PubMedCrossRef
147.
go back to reference Poltermann S, Kunert A, von der Heide M, Eck R, Hartmann A et al (2007) Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem 282:37537–37544PubMedCrossRef Poltermann S, Kunert A, von der Heide M, Eck R, Hartmann A et al (2007) Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem 282:37537–37544PubMedCrossRef
148.
go back to reference Luo S, Poltermann S, Kunert A, Rupp S, Zipfel PF (2009) Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol Immunol 47:541–550PubMedCrossRef Luo S, Poltermann S, Kunert A, Rupp S, Zipfel PF (2009) Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a Factor H, FHL-1 and plasminogen binding surface protein. Mol Immunol 47:541–550PubMedCrossRef
149.
go back to reference Luo S, Hoffmann R, Skerka C, Zipfel PF (2012) Glycerol-3-phosphate dehydrogenase 2 is a novel factor h, fhl-1 and plasminogen binding surface protein of Candida albicans. J Infect Dis Luo S, Hoffmann R, Skerka C, Zipfel PF (2012) Glycerol-3-phosphate dehydrogenase 2 is a novel factor h, fhl-1 and plasminogen binding surface protein of Candida albicans. J Infect Dis
150.
go back to reference Luo S, Hartmann A, Dahse HM, Skerka C, Zipfel PF (2010) Secreted pH-regulated antigen 1 of Candida albicans blocks activation and conversion of complement C3. J Immunol 185:2164–2173PubMedCrossRef Luo S, Hartmann A, Dahse HM, Skerka C, Zipfel PF (2010) Secreted pH-regulated antigen 1 of Candida albicans blocks activation and conversion of complement C3. J Immunol 185:2164–2173PubMedCrossRef
151.
go back to reference Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M et al (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694PubMedCrossRef Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M et al (2006) Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 281:688–694PubMedCrossRef
152.
go back to reference Schild L, Heyken A, de Groot PW, Hiller E, Mock M et al (2011) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10:98–109PubMedCrossRef Schild L, Heyken A, de Groot PW, Hiller E, Mock M et al (2011) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10:98–109PubMedCrossRef
153.
go back to reference Borg-von Zepelin M, Beggah S, Boggian K, Sanglard D, Monod M (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28:543–554PubMedCrossRef Borg-von Zepelin M, Beggah S, Boggian K, Sanglard D, Monod M (1998) The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28:543–554PubMedCrossRef
154.
go back to reference Horvath P, Nosanchuk JD, Hamari Z, Vagvolgyi C, Gacser A (2012) The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 205:923–933PubMedCrossRef Horvath P, Nosanchuk JD, Hamari Z, Vagvolgyi C, Gacser A (2012) The identification of gene duplication and the role of secreted aspartyl proteinase 1 in Candida parapsilosis virulence. J Infect Dis 205:923–933PubMedCrossRef
155.
go back to reference Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K et al (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026PubMedCrossRef Klengel T, Liang WJ, Chaloupka J, Ruoff C, Schroppel K et al (2005) Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol 15:2021–2026PubMedCrossRef
156.
go back to reference Fernández-Arenas E, Bleck CK, Nombela C, Gil C, Griffiths G et al (2009) Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell Microbiol 11:560–589PubMedCrossRef Fernández-Arenas E, Bleck CK, Nombela C, Gil C, Griffiths G et al (2009) Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell Microbiol 11:560–589PubMedCrossRef
157.
go back to reference Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T (2003) Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 278:13086–13093PubMedCrossRef Ibata-Ombetta S, Idziorek T, Trinel PA, Poulain D, Jouault T (2003) Candida albicans phospholipomannan promotes survival of phagocytosed yeasts through modulation of bad phosphorylation and macrophage apoptosis. J Biol Chem 278:13086–13093PubMedCrossRef
158.
go back to reference García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O (2011) The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun 79:2136–2144PubMedCrossRef García-Rodas R, González-Camacho F, Rodríguez-Tudela JL, Cuenca-Estrella M, Zaragoza O (2011) The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect Immun 79:2136–2144PubMedCrossRef
159.
go back to reference Wellington M, Dolan K, Krysan DJ (2009) Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect Immun 77:405–413PubMedCrossRef Wellington M, Dolan K, Krysan DJ (2009) Live Candida albicans suppresses production of reactive oxygen species in phagocytes. Infect Immun 77:405–413PubMedCrossRef
160.
go back to reference Lopes da Rosa J, Boyartchuk VL, Zhu LJ, Kaufman PD (2010) Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA 107:1594–1599PubMedCrossRef Lopes da Rosa J, Boyartchuk VL, Zhu LJ, Kaufman PD (2010) Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc Natl Acad Sci USA 107:1594–1599PubMedCrossRef
161.
go back to reference Lu Y, Su C, Wang A, Liu H (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9:e1001105PubMedCrossRef Lu Y, Su C, Wang A, Liu H (2011) Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance. PLoS Biol 9:e1001105PubMedCrossRef
Metadata
Title
Thriving within the host: Candida spp. interactions with phagocytic cells
Authors
Pedro Miramón
Lydia Kasper
Bernhard Hube
Publication date
01-06-2013
Publisher
Springer-Verlag
Published in
Medical Microbiology and Immunology / Issue 3/2013
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-013-0288-z

Other articles of this Issue 3/2013

Medical Microbiology and Immunology 3/2013 Go to the issue