Skip to main content
Top
Published in: Medical Microbiology and Immunology 4/2012

01-11-2012 | Review

Host-cell factors involved in papillomavirus entry

Authors: Luise Florin, Martin Sapp, Gilles A. Spoden

Published in: Medical Microbiology and Immunology | Issue 4/2012

Login to get access

Abstract

Papillomaviruses infect skin and mucosa where they induce warts and cancers. For entry to occur, they sequentially engage numerous host proteins, allowing them to deliver their genetic information into target cells. This multistep process starts with initial binding via its L1 major capsid protein, followed by structural changes of the capsid on the cell surface, engagement of different receptors, and endocytosis. The post-entry phase includes capsid disassembly, endosomal escape of a complex of the minor capsid protein L2 and the viral genome, its transport into the nucleus, and accumulation at nuclear substructures. This review summarizes the current knowledge of the papillomavirus entry pathway and the role of cellular proteins involved in this course of events.
Literature
2.
go back to reference Bernard H-U, Burk RD, Chen Z, van Doorslaer K, Hausen HZ, de Villiers E-M (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79PubMedCrossRef Bernard H-U, Burk RD, Chen Z, van Doorslaer K, Hausen HZ, de Villiers E-M (2010) Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79PubMedCrossRef
3.
go back to reference Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367PubMedCrossRef Pett M, Coleman N (2007) Integration of high-risk human papillomavirus: a key event in cervical carcinogenesis? J Pathol 212:356–367PubMedCrossRef
4.
go back to reference Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60:1445–1456PubMedCrossRef Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60:1445–1456PubMedCrossRef
5.
go back to reference Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197PubMedCrossRef Buck CB, Cheng N, Thompson CD, Lowy DR, Steven AC, Schiller JT, Trus BL (2008) Arrangement of L2 within the papillomavirus capsid. J Virol 82:5190–5197PubMedCrossRef
6.
go back to reference Finnen RL, Erickson KD, Chen XS, Garcea RL (2003) Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77:4818–4826 Finnen RL, Erickson KD, Chen XS, Garcea RL (2003) Interactions between papillomavirus L1 and L2 capsid proteins. J Virol 77:4818–4826
7.
go back to reference Liu WJ, Gissmann L, Sun XY, Kanjanahaluethai A, Müller M, Doorbar J, Zhou J (1997) Sequence close to the N-terminus of L2 protein is displayed on the surface of bovine papillomavirus type 1 virions. Virology 227:474–483PubMedCrossRef Liu WJ, Gissmann L, Sun XY, Kanjanahaluethai A, Müller M, Doorbar J, Zhou J (1997) Sequence close to the N-terminus of L2 protein is displayed on the surface of bovine papillomavirus type 1 virions. Virology 227:474–483PubMedCrossRef
8.
go back to reference Kondo K, Ishii Y, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358:266–272PubMedCrossRef Kondo K, Ishii Y, Ochi H, Matsumoto T, Yoshikawa H, Kanda T (2007) Neutralization of HPV16, 18, 31, and 58 pseudovirions with antisera induced by immunizing rabbits with synthetic peptides representing segments of the HPV16 minor capsid protein L2 surface region. Virology 358:266–272PubMedCrossRef
9.
go back to reference Day PM, Gambhira R, Roden RBS, Lowy DR, Schiller JT (2008) Mechanisms of human papillomavirus type 16 neutralization by L2 cross-neutralizing and L1 type-specific antibodies. J Virol 82:4638–4646PubMedCrossRef Day PM, Gambhira R, Roden RBS, Lowy DR, Schiller JT (2008) Mechanisms of human papillomavirus type 16 neutralization by L2 cross-neutralizing and L1 type-specific antibodies. J Virol 82:4638–4646PubMedCrossRef
10.
go back to reference Yang R, Day P, Yutzy W IV, Lin K, Hung C, Roden R (2003) Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol 77:3531PubMedCrossRef Yang R, Day P, Yutzy W IV, Lin K, Hung C, Roden R (2003) Cell surface-binding motifs of L2 that facilitate papillomavirus infection. J Virol 77:3531PubMedCrossRef
11.
go back to reference Zhou J, Sun XY, Stenzel DJ, Frazer IH (1991) Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185:251–257PubMedCrossRef Zhou J, Sun XY, Stenzel DJ, Frazer IH (1991) Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology 185:251–257PubMedCrossRef
12.
go back to reference Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184PubMedCrossRef Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184PubMedCrossRef
13.
go back to reference Hagensee ME, Yaegashi N, Galloway DA (1993) Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67:315–322PubMed Hagensee ME, Yaegashi N, Galloway DA (1993) Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. J Virol 67:315–322PubMed
14.
go back to reference Rose RC, Bonnez W, Reichman RC, Garcea RL (1993) Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67:1936–1944PubMed Rose RC, Bonnez W, Reichman RC, Garcea RL (1993) Expression of human papillomavirus type 11 L1 protein in insect cells: in vivo and in vitro assembly of viruslike particles. J Virol 67:1936–1944PubMed
15.
go back to reference Volpers C, Schirmacher P, Streeck RE, Sapp M (1994) Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology 200:504–512PubMedCrossRef Volpers C, Schirmacher P, Streeck RE, Sapp M (1994) Assembly of the major and the minor capsid protein of human papillomavirus type 33 into virus-like particles and tubular structures in insect cells. Virology 200:504–512PubMedCrossRef
16.
go back to reference Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT (1994) Interaction of papillomaviruses with the cell surface. J Virol 68:7260–7266PubMed Roden RB, Kirnbauer R, Jenson AB, Lowy DR, Schiller JT (1994) Interaction of papillomaviruses with the cell surface. J Virol 68:7260–7266PubMed
17.
go back to reference Müller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, Alonso A, Zentgraf H, Zhou J (1995) Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol 69:948–954PubMed Müller M, Gissmann L, Cristiano RJ, Sun XY, Frazer IH, Jenson AB, Alonso A, Zentgraf H, Zhou J (1995) Papillomavirus capsid binding and uptake by cells from different tissues and species. J Virol 69:948–954PubMed
18.
go back to reference Volpers C, Sapp M, Snijders PJ, Walboomers JM, Streeck RE (1995) Conformational and linear epitopes on virus-like particles of human papillomavirus type 33 identified by monoclonal antibodies to the minor capsid protein L2. J Gen Virol 76(Pt 11):2661–2667PubMedCrossRef Volpers C, Sapp M, Snijders PJ, Walboomers JM, Streeck RE (1995) Conformational and linear epitopes on virus-like particles of human papillomavirus type 33 identified by monoclonal antibodies to the minor capsid protein L2. J Gen Virol 76(Pt 11):2661–2667PubMedCrossRef
19.
go back to reference Unckell F, Streeck RE, Sapp M (1997) Generation and neutralization of pseudovirions of human papillomavirus type 33. J Virol 71:2934–2939PubMed Unckell F, Streeck RE, Sapp M (1997) Generation and neutralization of pseudovirions of human papillomavirus type 33. J Virol 71:2934–2939PubMed
20.
go back to reference Stauffer Y, Raj K, Masternak K, Beard P (1998) Infectious human papillomavirus type 18 pseudovirions. J Mol Biol 283:529–536PubMedCrossRef Stauffer Y, Raj K, Masternak K, Beard P (1998) Infectious human papillomavirus type 18 pseudovirions. J Mol Biol 283:529–536PubMedCrossRef
21.
go back to reference Buck C, Pastrana D, Lowy D, Schiller J (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78:751PubMedCrossRef Buck C, Pastrana D, Lowy D, Schiller J (2004) Efficient intracellular assembly of papillomaviral vectors. J Virol 78:751PubMedCrossRef
22.
go back to reference *Florin L, Sapp C, Streeck R, Sapp M (2002) Assembly and translocation of papillomavirus capsid proteins. J Virol 76:10009 *Florin L, Sapp C, Streeck R, Sapp M (2002) Assembly and translocation of papillomavirus capsid proteins. J Virol 76:10009
23.
go back to reference *Schäfer F, Florin L, Sapp M (2002) DNA binding of L1 is required for human papillomavirus morphogenesis in vivo. Virology 295:172–181 *Schäfer F, Florin L, Sapp M (2002) DNA binding of L1 is required for human papillomavirus morphogenesis in vivo. Virology 295:172–181
24.
go back to reference *Giroglou T, Florin L, Schafer F, Streeck R, Sapp M (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75:1565 *Giroglou T, Florin L, Schafer F, Streeck R, Sapp M (2001) Human papillomavirus infection requires cell surface heparan sulfate. J Virol 75:1565
25.
go back to reference *Giroglou T, Sapp M, Lane C, Fligge C, Christensen N, Streeck R, Rose R (2001) Immunological analyses of human papillomavirus capsids. Vaccine 19:1783–1793 *Giroglou T, Sapp M, Lane C, Fligge C, Christensen N, Streeck R, Rose R (2001) Immunological analyses of human papillomavirus capsids. Vaccine 19:1783–1793
26.
go back to reference *Fligge C, Giroglou T, Streeck RE, Sapp M (2001) Induction of type-specific neutralizing antibodies by capsomeres of human papillomavirus type 33. Virology 283:353–357 *Fligge C, Giroglou T, Streeck RE, Sapp M (2001) Induction of type-specific neutralizing antibodies by capsomeres of human papillomavirus type 33. Virology 283:353–357
27.
go back to reference Leder C, Kleinschmidt JA, Wiethe C, Müller M (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol 75:9201–9209PubMedCrossRef Leder C, Kleinschmidt JA, Wiethe C, Müller M (2001) Enhancement of capsid gene expression: preparing the human papillomavirus type 16 major structural gene L1 for DNA vaccination purposes. J Virol 75:9201–9209PubMedCrossRef
28.
go back to reference Buck CB, Thompson CD, Pang Y-YS, Lowy DR, Schiller JT (2005) Maturation of papillomavirus capsids. J Virol 79:2839–2846PubMedCrossRef Buck CB, Thompson CD, Pang Y-YS, Lowy DR, Schiller JT (2005) Maturation of papillomavirus capsids. J Virol 79:2839–2846PubMedCrossRef
29.
go back to reference Pyeon D, Lambert PF, Ahlquist P (2005) Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci USA 102:9311–9316PubMedCrossRef Pyeon D, Lambert PF, Ahlquist P (2005) Production of infectious human papillomavirus independently of viral replication and epithelial cell differentiation. Proc Natl Acad Sci USA 102:9311–9316PubMedCrossRef
30.
go back to reference Ozbun MA (2002) Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J Virol 76:11291–11300PubMedCrossRef Ozbun MA (2002) Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J Virol 76:11291–11300PubMedCrossRef
31.
go back to reference Ozbun MA (2002) Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol 83:2753–2763PubMed Ozbun MA (2002) Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol 83:2753–2763PubMed
32.
go back to reference Mclaughlin-Drubin ME, Meyers C (2005) Propagation of infectious, high-risk HPV in organotypic “raft” culture. Methods Mol Med 119:171–186PubMed Mclaughlin-Drubin ME, Meyers C (2005) Propagation of infectious, high-risk HPV in organotypic “raft” culture. Methods Mol Med 119:171–186PubMed
33.
go back to reference Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C (2011) Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS ONE 6:e22427PubMedCrossRef Conway MJ, Cruz L, Alam S, Christensen ND, Meyers C (2011) Differentiation-dependent interpentameric disulfide bond stabilizes native human papillomavirus type 16. PLoS ONE 6:e22427PubMedCrossRef
34.
go back to reference Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 106:20458–20463PubMedCrossRef Kines RC, Thompson CD, Lowy DR, Schiller JT, Day PM (2009) The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 106:20458–20463PubMedCrossRef
35.
go back to reference Schiller JT, Day PM, Kines RC (2010) Current understanding of the mechanism of HPV infection. Gynecol Oncol 118:S12–S17PubMedCrossRef Schiller JT, Day PM, Kines RC (2010) Current understanding of the mechanism of HPV infection. Gynecol Oncol 118:S12–S17PubMedCrossRef
36.
go back to reference Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13:857–861PubMedCrossRef Roberts JN, Buck CB, Thompson CD, Kines R, Bernardo M, Choyke PL, Lowy DR, Schiller JT (2007) Genital transmission of HPV in a mouse model is potentiated by nonoxynol-9 and inhibited by carrageenan. Nat Med 13:857–861PubMedCrossRef
37.
go back to reference Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067–2074PubMedCrossRef Johnson KM, Kines RC, Roberts JN, Lowy DR, Schiller JT, Day PM (2009) Role of heparan sulfate in attachment to and infection of the murine female genital tract by human papillomavirus. J Virol 83:2067–2074PubMedCrossRef
38.
go back to reference Broutian TR, Brendle SA, Christensen ND (2010) Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types. J Gen Virol 91:531–540PubMedCrossRef Broutian TR, Brendle SA, Christensen ND (2010) Differential binding patterns to host cells associated with particles of several human alphapapillomavirus types. J Gen Virol 91:531–540PubMedCrossRef
39.
go back to reference *Selinka H-C, Florin L, Patel HD, Freitag K, Schmidtke M, Makarov VA, Sapp M (2007) Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81:10970–10980 *Selinka H-C, Florin L, Patel HD, Freitag K, Schmidtke M, Makarov VA, Sapp M (2007) Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J Virol 81:10970–10980
40.
go back to reference Culp TD, Christensen ND (2004) Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology 319:152–161PubMedCrossRef Culp TD, Christensen ND (2004) Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology 319:152–161PubMedCrossRef
41.
go back to reference Joyce J, Tung J, Przysiecki C, Cook J, Lehman E, Sands J, Jansen K, Keller P (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274:5810PubMedCrossRef Joyce J, Tung J, Przysiecki C, Cook J, Lehman E, Sands J, Jansen K, Keller P (1999) The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274:5810PubMedCrossRef
42.
go back to reference Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125PubMedCrossRef Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125PubMedCrossRef
43.
go back to reference *Knappe M, Bodevin S, Selinka H-C, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M (2007) Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 282:27913–27922 *Knappe M, Bodevin S, Selinka H-C, Spillmann D, Streeck RE, Chen XS, Lindahl U, Sapp M (2007) Surface-exposed amino acid residues of HPV16 L1 protein mediating interaction with cell surface heparan sulfate. J Biol Chem 282:27913–27922
44.
go back to reference Dasgupta J, Bienkowska-Haba M, Ortega ME, Patel HD, Bodevin S, Spillmann D, Bishop B, Sapp M, Chen XS (2011) Structural basis of oligosaccharide receptor recognition by human papillomavirus. J Biol Chem 286:2617–2624PubMedCrossRef Dasgupta J, Bienkowska-Haba M, Ortega ME, Patel HD, Bodevin S, Spillmann D, Bishop B, Sapp M, Chen XS (2011) Structural basis of oligosaccharide receptor recognition by human papillomavirus. J Biol Chem 286:2617–2624PubMedCrossRef
45.
go back to reference Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci USA 103:1516–1521PubMedCrossRef Buck CB, Day PM, Thompson CD, Lubkowski J, Lu W, Lowy DR, Schiller JT (2006) Human alpha-defensins block papillomavirus infection. Proc Natl Acad Sci USA 103:1516–1521PubMedCrossRef
46.
go back to reference *Spoden GA, Besold K, Krauter S, Plachter B, Hanik N, Kilbinger AFM, Lambert C, Florin L (2011) Polyethylenimine Is a Strong Inhibitor of Human Papillomavirus and Cytomegalovirus Infection. Antimicrobial Agents and Chemotherapy 56:75–82 *Spoden GA, Besold K, Krauter S, Plachter B, Hanik N, Kilbinger AFM, Lambert C, Florin L (2011) Polyethylenimine Is a Strong Inhibitor of Human Papillomavirus and Cytomegalovirus Infection. Antimicrobial Agents and Chemotherapy 56:75–82
47.
go back to reference Schelhaas M, Ewers H, Rajamäki M-L, Day PM, Schiller JT, Helenius A (2008) Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4:e1000148PubMedCrossRef Schelhaas M, Ewers H, Rajamäki M-L, Day PM, Schiller JT, Helenius A (2008) Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog 4:e1000148PubMedCrossRef
48.
go back to reference Smith JL, Lidke DS, Ozbun MA (2008) Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology 381:16–21PubMedCrossRef Smith JL, Lidke DS, Ozbun MA (2008) Virus activated filopodia promote human papillomavirus type 31 uptake from the extracellular matrix. Virology 381:16–21PubMedCrossRef
49.
go back to reference *Selinka H-C, Giroglou T, Nowak T, Christensen ND, Sapp M (2003) Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol 77:12961–12967 *Selinka H-C, Giroglou T, Nowak T, Christensen ND, Sapp M (2003) Further evidence that papillomavirus capsids exist in two distinct conformations. J Virol 77:12961–12967
50.
go back to reference Day PM, Lowy DR, Schiller JT (2008) Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 82:12565–12568PubMedCrossRef Day PM, Lowy DR, Schiller JT (2008) Heparan sulfate-independent cell binding and infection with furin-precleaved papillomavirus capsids. J Virol 82:12565–12568PubMedCrossRef
51.
go back to reference Bienkowska-Haba M, Patel HD, Sapp M (2009) Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog 5:e1000524PubMedCrossRef Bienkowska-Haba M, Patel HD, Sapp M (2009) Target cell cyclophilins facilitate human papillomavirus type 16 infection. PLoS Pathog 5:e1000524PubMedCrossRef
52.
go back to reference Richards RM, Lowy DR, Schiller JT, Day PM (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 103:1522–1527PubMedCrossRef Richards RM, Lowy DR, Schiller JT, Day PM (2006) Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc Natl Acad Sci USA 103:1522–1527PubMedCrossRef
53.
go back to reference Culp T, Budgeon L, Christensen N (2006) Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology 347:147–159PubMedCrossRef Culp T, Budgeon L, Christensen N (2006) Human papillomaviruses bind a basal extracellular matrix component secreted by keratinocytes which is distinct from a membrane-associated receptor. Virology 347:147–159PubMedCrossRef
54.
go back to reference Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND (2006) Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80:8940–8950PubMedCrossRef Culp TD, Budgeon LR, Marinkovich MP, Meneguzzi G, Christensen ND (2006) Keratinocyte-secreted laminin 5 can function as a transient receptor for human papillomaviruses by binding virions and transferring them to adjacent cells. J Virol 80:8940–8950PubMedCrossRef
55.
go back to reference Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA (1997) Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 71:2449–2456PubMed Evander M, Frazer IH, Payne E, Qi YM, Hengst K, McMillan NA (1997) Identification of the alpha6 integrin as a candidate receptor for papillomaviruses. J Virol 71:2449–2456PubMed
56.
go back to reference McMillan N, Payne E, Frazer I, Evander M (1999) Expression of the [alpha] 6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology 261:271–279PubMedCrossRef McMillan N, Payne E, Frazer I, Evander M (1999) Expression of the [alpha] 6 integrin confers papillomavirus binding upon receptor-negative B-cells. Virology 261:271–279PubMedCrossRef
57.
go back to reference Yoon C, Kim K, Park S, Cheong S (2001) [alpha] 6 integrin is the main receptor of human papillomavirus type 16 VLP. Biochem Biophys Res Commun 283:668–673PubMedCrossRef Yoon C, Kim K, Park S, Cheong S (2001) [alpha] 6 integrin is the main receptor of human papillomavirus type 16 VLP. Biochem Biophys Res Commun 283:668–673PubMedCrossRef
58.
go back to reference Payne E, Bowles M, Don A, Hancock J, McMillan N (2001) Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. J Virol 75:4150PubMedCrossRef Payne E, Bowles M, Don A, Hancock J, McMillan N (2001) Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. J Virol 75:4150PubMedCrossRef
59.
go back to reference Fothergill T, McMillan NAJ (2006) Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology 352:319–328PubMedCrossRef Fothergill T, McMillan NAJ (2006) Papillomavirus virus-like particles activate the PI3-kinase pathway via alpha-6 beta-4 integrin upon binding. Virology 352:319–328PubMedCrossRef
60.
go back to reference Surviladze Z, Dziduszko A, Ozbun MA (2012) Essential roles for soluble virion-associated heparan sulfonated proteoglycans and Growth factors in human papillomavirus infections. Imperiale M (ed). PLoS Pathog 8:e1002519PubMedCrossRef Surviladze Z, Dziduszko A, Ozbun MA (2012) Essential roles for soluble virion-associated heparan sulfonated proteoglycans and Growth factors in human papillomavirus infections. Imperiale M (ed). PLoS Pathog 8:e1002519PubMedCrossRef
61.
go back to reference *Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C, Florin L (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16—involvement of tetraspanin-enriched microdomains (TEMs). PLoS ONE 3:e3313 *Spoden G, Freitag K, Husmann M, Boller K, Sapp M, Lambert C, Florin L (2008) Clathrin- and caveolin-independent entry of human papillomavirus type 16—involvement of tetraspanin-enriched microdomains (TEMs). PLoS ONE 3:e3313
62.
go back to reference Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566PubMedCrossRef Odintsova E, Voortman J, Gilbert E, Berditchevski F (2003) Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. J Cell Sci 116:4557–4566PubMedCrossRef
63.
go back to reference André M, Le Caer J-P, Greco C, Planchon S, El Nemer W, Boucheix C, Rubinstein E, Chamot-Rooke J, Le Naour F (2006) Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6:1437–1449PubMedCrossRef André M, Le Caer J-P, Greco C, Planchon S, El Nemer W, Boucheix C, Rubinstein E, Chamot-Rooke J, Le Naour F (2006) Proteomic analysis of the tetraspanin web using LC-ESI-MS/MS and MALDI-FTICR-MS. Proteomics 6:1437–1449PubMedCrossRef
64.
go back to reference Lazo PA (2007) Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 98:1666–1677PubMedCrossRef Lazo PA (2007) Functional implications of tetraspanin proteins in cancer biology. Cancer Sci 98:1666–1677PubMedCrossRef
65.
go back to reference Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213PubMedCrossRef Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. Cancer Res 68:3204–3213PubMedCrossRef
66.
go back to reference Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982PubMedCrossRef Sterk LM, Geuijen CA, Oomen LC, Calafat J, Janssen H, Sonnenberg A (2000) The tetraspan molecule CD151, a novel constituent of hemidesmosomes, associates with the integrin alpha6beta4 and may regulate the spatial organization of hemidesmosomes. J Cell Biol 149:969–982PubMedCrossRef
67.
go back to reference Bailey RL, Herbert JM, Khan K, Heath VL, Bicknell R, Tomlinson MG (2011) The emerging role of tetraspanin microdomains on endothelial cells. Biochem Soc Trans 39:1667–1673PubMedCrossRef Bailey RL, Herbert JM, Khan K, Heath VL, Bicknell R, Tomlinson MG (2011) The emerging role of tetraspanin microdomains on endothelial cells. Biochem Soc Trans 39:1667–1673PubMedCrossRef
68.
go back to reference Christensen ND, Cladel NM, Reed CA (1995) Postattachment neutralization of papillomaviruses by monoclonal and polyclonal antibodies. Virology 207:136–142PubMedCrossRef Christensen ND, Cladel NM, Reed CA (1995) Postattachment neutralization of papillomaviruses by monoclonal and polyclonal antibodies. Virology 207:136–142PubMedCrossRef
69.
go back to reference Smith JL, Campos SK, Ozbun MA (2007) Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 81:9922–9931PubMedCrossRef Smith JL, Campos SK, Ozbun MA (2007) Human papillomavirus type 31 uses a caveolin 1- and dynamin 2-mediated entry pathway for infection of human keratinocytes. J Virol 81:9922–9931PubMedCrossRef
70.
go back to reference Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by Actin-dependent, clathrin- and lipid raft-independent endocytosis. Meyers C (ed). PLoS Pathog 8:e1002657PubMedCrossRef Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day PM, Schiller JT, Helenius A (2012) Entry of human papillomavirus type 16 by Actin-dependent, clathrin- and lipid raft-independent endocytosis. Meyers C (ed). PLoS Pathog 8:e1002657PubMedCrossRef
71.
go back to reference Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612PubMedCrossRef Mayor S, Pagano RE (2007) Pathways of clathrin-independent endocytosis. Nat Rev Mol Cell Biol 8:603–612PubMedCrossRef
72.
go back to reference Volpers C, Unckell F, Schirmacher P, Streeck RE, Sapp M (1995) Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol 69:3258–3264PubMed Volpers C, Unckell F, Schirmacher P, Streeck RE, Sapp M (1995) Binding and internalization of human papillomavirus type 33 virus-like particles by eukaryotic cells. J Virol 69:3258–3264PubMed
73.
go back to reference *Selinka H, Giroglou T, Sapp M (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299:279–287 *Selinka H, Giroglou T, Sapp M (2002) Analysis of the infectious entry pathway of human papillomavirus type 33 pseudovirions. Virology 299:279–287
74.
go back to reference Bousarghin L, Touze A, Sizaret P, Coursaget P (2003) Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77:3846PubMedCrossRef Bousarghin L, Touze A, Sizaret P, Coursaget P (2003) Human papillomavirus types 16, 31, and 58 use different endocytosis pathways to enter cells. J Virol 77:3846PubMedCrossRef
75.
go back to reference Day P, Lowy D, Schiller J (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307:1–11PubMedCrossRef Day P, Lowy D, Schiller J (2003) Papillomaviruses infect cells via a clathrin-dependent pathway. Virology 307:1–11PubMedCrossRef
76.
go back to reference Laniosz V, Holthusen KA, Meneses PI (2008) Bovine papillomavirus type 1: from clathrin to caveolin. J Virol 82:6288–6298PubMedCrossRef Laniosz V, Holthusen KA, Meneses PI (2008) Bovine papillomavirus type 1: from clathrin to caveolin. J Virol 82:6288–6298PubMedCrossRef
77.
go back to reference Abban CY, Bradbury NA, Meneses PI (2008) HPV16 and BPV1 infection can be blocked by the dynamin inhibitor dynasore. Am J Ther 15:304–311PubMedCrossRef Abban CY, Bradbury NA, Meneses PI (2008) HPV16 and BPV1 infection can be blocked by the dynamin inhibitor dynasore. Am J Ther 15:304–311PubMedCrossRef
78.
go back to reference Laniosz V, Dabydeen SA, Havens MA, Meneses PI (2009) Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin A sensitive. J Virol 83:8221–8232PubMedCrossRef Laniosz V, Dabydeen SA, Havens MA, Meneses PI (2009) Human papillomavirus type 16 infection of human keratinocytes requires clathrin and caveolin-1 and is brefeldin A sensitive. J Virol 83:8221–8232PubMedCrossRef
79.
go back to reference Smith JL, Campos SK, Wandinger-Ness A, Ozbun MA (2008) Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol 82:9505–9512PubMedCrossRef Smith JL, Campos SK, Wandinger-Ness A, Ozbun MA (2008) Caveolin-1-dependent infectious entry of human papillomavirus type 31 in human keratinocytes proceeds to the endosomal pathway for pH-dependent uncoating. J Virol 82:9505–9512PubMedCrossRef
80.
go back to reference Hindmarsh PL, Laimins LA (2007) Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 4:19PubMedCrossRef Hindmarsh PL, Laimins LA (2007) Mechanisms regulating expression of the HPV 31 L1 and L2 capsid proteins and pseudovirion entry. Virol J 4:19PubMedCrossRef
81.
go back to reference Sapp M, Day PM (2009) Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384:400–409PubMedCrossRef Sapp M, Day PM (2009) Structure, attachment and entry of polyoma- and papillomaviruses. Virology 384:400–409PubMedCrossRef
82.
go back to reference Horvath CAJ, Boulet GAV, Renoux VM, Delvenne PO, Bogers J-PJ (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11PubMedCrossRef Horvath CAJ, Boulet GAV, Renoux VM, Delvenne PO, Bogers J-PJ (2010) Mechanisms of cell entry by human papillomaviruses: an overview. Virol J 7:11PubMedCrossRef
83.
go back to reference Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M (2012) Cyclophilins Facilitate Dissociation of the HPV16 Capsid Protein L1 from the L2/DNA Complex Following Virus Entry. J Virol 86(18):9875–9887 Bienkowska-Haba M, Williams C, Kim SM, Garcea RL, Sapp M (2012) Cyclophilins Facilitate Dissociation of the HPV16 Capsid Protein L1 from the L2/DNA Complex Following Virus Entry. J Virol 86(18):9875–9887
84.
go back to reference *Kämper N, Day PM, Nowak T, Selinka H-C, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80:759–768 *Kämper N, Day PM, Nowak T, Selinka H-C, Florin L, Bolscher J, Hilbig L, Schiller JT, Sapp M (2006) A membrane-destabilizing peptide in capsid protein L2 is required for egress of papillomavirus genomes from endosomes. J Virol 80:759–768
85.
go back to reference Yang R, Yutzy W, Viscidi R, Roden R (2003) Interaction of L2 with β-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 278:12546PubMedCrossRef Yang R, Yutzy W, Viscidi R, Roden R (2003) Interaction of L2 with β-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 278:12546PubMedCrossRef
86.
go back to reference Bossis I, Roden RBS, Gambhira R, Yang R, Tagaya M, Howley PM, Meneses PI (2005) Interaction of tSNARE syntaxin 18 with the papillomavirus minor capsid protein mediates infection. J Virol 79:6723–6731PubMedCrossRef Bossis I, Roden RBS, Gambhira R, Yang R, Tagaya M, Howley PM, Meneses PI (2005) Interaction of tSNARE syntaxin 18 with the papillomavirus minor capsid protein mediates infection. J Virol 79:6723–6731PubMedCrossRef
87.
go back to reference Laniosz V, Nguyen KC, Meneses PI (2007) Bovine papillomavirus type 1 infection is mediated by SNARE syntaxin 18. J Virol 81:7435–7448PubMedCrossRef Laniosz V, Nguyen KC, Meneses PI (2007) Bovine papillomavirus type 1 infection is mediated by SNARE syntaxin 18. J Virol 81:7435–7448PubMedCrossRef
89.
go back to reference *Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, Streeck RE, Sapp M (2006) Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol 80:6691–6696 *Florin L, Becker KA, Lambert C, Nowak T, Sapp C, Strand D, Streeck RE, Sapp M (2006) Identification of a dynein interacting domain in the papillomavirus minor capsid protein l2. J Virol 80:6691–6696
90.
go back to reference *Schneider MA, Spoden GA, Florin L, Lambert C (2011) Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol 13:32–46 *Schneider MA, Spoden GA, Florin L, Lambert C (2011) Identification of the dynein light chains required for human papillomavirus infection. Cell Microbiol 13:32–46
91.
go back to reference Liu W, Qi Y, Zhao K, Liu Y, Liu X, Frazer I (2001) Association of bovine papillomavirus type 1 with microtubules. Virology 282:237–244PubMedCrossRef Liu W, Qi Y, Zhao K, Liu Y, Liu X, Frazer I (2001) Association of bovine papillomavirus type 1 with microtubules. Virology 282:237–244PubMedCrossRef
92.
93.
go back to reference Huang H-S, Buck CB, Lambert PF (2010) Inhibition of gamma secretase blocks HPV infection. Virology 407:391–396PubMedCrossRef Huang H-S, Buck CB, Lambert PF (2010) Inhibition of gamma secretase blocks HPV infection. Virology 407:391–396PubMedCrossRef
94.
go back to reference Karanam B, Peng S, Li T, Buck C, Day PM, Roden RBS (2010) Papillomavirus infection requires secretase. J Virol 84:10661–10670PubMedCrossRef Karanam B, Peng S, Li T, Buck C, Day PM, Roden RBS (2010) Papillomavirus infection requires secretase. J Virol 84:10661–10670PubMedCrossRef
95.
go back to reference Campos SK, Chapman JA, Deymier MJ, Bronnimann MP, Ozbun MA (2012) Opposing Effects of Bacitracin on Human Papillomavirus Type 16 Infection: Enhancement of Binding and Entry and Inhibition of Endosomal Penetration. J Virol 86(8):4169–4181 Campos SK, Chapman JA, Deymier MJ, Bronnimann MP, Ozbun MA (2012) Opposing Effects of Bacitracin on Human Papillomavirus Type 16 Infection: Enhancement of Binding and Entry and Inhibition of Endosomal Penetration. J Virol 86(8):4169–4181
96.
go back to reference Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32PubMedCrossRef Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32PubMedCrossRef
97.
go back to reference Campos SK, Ozbun MA (2009) Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. Papavasiliou N (ed). PLoS ONE 4:e4463PubMedCrossRef Campos SK, Ozbun MA (2009) Two highly conserved cysteine residues in HPV16 L2 form an intramolecular disulfide bond and are critical for infectivity in human keratinocytes. Papavasiliou N (ed). PLoS ONE 4:e4463PubMedCrossRef
98.
go back to reference Gambhira R, Jagu S, Karanam B, Day PM, Roden R (2009) Role of L2 cysteines in papillomavirus infection and neutralization. Virol J 6:176PubMedCrossRef Gambhira R, Jagu S, Karanam B, Day PM, Roden R (2009) Role of L2 cysteines in papillomavirus infection and neutralization. Virol J 6:176PubMedCrossRef
99.
go back to reference Conway MJ, Alam S, Christensen ND, Meyers C (2009) Overlapping and independent structural roles for human papillomavirus type 16 L2 conserved cysteines. Virology 393:295–303PubMedCrossRef Conway MJ, Alam S, Christensen ND, Meyers C (2009) Overlapping and independent structural roles for human papillomavirus type 16 L2 conserved cysteines. Virology 393:295–303PubMedCrossRef
100.
go back to reference *Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Müller M, Streeck RE, Sapp M (2004) Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol 78:5546–5553 *Florin L, Becker KA, Sapp C, Lambert C, Sirma H, Müller M, Streeck RE, Sapp M (2004) Nuclear translocation of papillomavirus minor capsid protein L2 requires Hsc70. J Virol 78:5546–5553
101.
go back to reference *Becker KA, Florin L, Sapp C, Sapp M (2003) Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology 314:161–167 *Becker KA, Florin L, Sapp C, Sapp M (2003) Dissection of human papillomavirus type 33 L2 domains involved in nuclear domains (ND) 10 homing and reorganization. Virology 314:161–167
102.
go back to reference Mamoor S, Onder Z, Karanam B, Kwak K, Bordeaux J, Crosby L, Roden RBS, Moroianu J (2012) The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic. Virology 422:413–424PubMedCrossRef Mamoor S, Onder Z, Karanam B, Kwak K, Bordeaux J, Crosby L, Roden RBS, Moroianu J (2012) The high risk HPV16 L2 minor capsid protein has multiple transport signals that mediate its nucleocytoplasmic traffic. Virology 422:413–424PubMedCrossRef
103.
go back to reference Sun XY, Frazer I, Müller M, Gissmann L, Zhou J (1995) Sequences required for the nuclear targeting and accumulation of human papillomavirus type 6B L2 protein. Virology 213:321–327PubMedCrossRef Sun XY, Frazer I, Müller M, Gissmann L, Zhou J (1995) Sequences required for the nuclear targeting and accumulation of human papillomavirus type 6B L2 protein. Virology 213:321–327PubMedCrossRef
104.
go back to reference Darshan MS, Lucchi J, Harding E, Moroianu J (2004) The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol 78:12179–12188PubMedCrossRef Darshan MS, Lucchi J, Harding E, Moroianu J (2004) The l2 minor capsid protein of human papillomavirus type 16 interacts with a network of nuclear import receptors. J Virol 78:12179–12188PubMedCrossRef
105.
go back to reference Fay A, Yutzy WH, Roden RBS, Moroianu J (2004) The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding. J Virol 78:13447–13454PubMedCrossRef Fay A, Yutzy WH, Roden RBS, Moroianu J (2004) The positively charged termini of L2 minor capsid protein required for bovine papillomavirus infection function separately in nuclear import and DNA binding. J Virol 78:13447–13454PubMedCrossRef
106.
go back to reference Klucevsek K (2006) Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology 352:200–208PubMedCrossRef Klucevsek K (2006) Nuclear import strategies of high-risk HPV18 L2 minor capsid protein. Virology 352:200–208PubMedCrossRef
107.
go back to reference Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF (2009) Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 5:e1000318PubMedCrossRef Pyeon D, Pearce SM, Lank SM, Ahlquist P, Lambert PF (2009) Establishment of human papillomavirus infection requires cell cycle progression. PLoS Pathog 5:e1000318PubMedCrossRef
108.
go back to reference Day PM, Roden RB, Lowy DR, Schiller JT (1998) The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol 72:142–150PubMed Day PM, Roden RB, Lowy DR, Schiller JT (1998) The papillomavirus minor capsid protein, L2, induces localization of the major capsid protein, L1, and the viral transcription/replication protein, E2, to PML oncogenic domains. J Virol 72:142–150PubMed
109.
go back to reference *Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M (2002) Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 295:97–107 *Florin L, Schäfer F, Sotlar K, Streeck RE, Sapp M (2002) Reorganization of nuclear domain 10 induced by papillomavirus capsid protein l2. Virology 295:97–107
110.
go back to reference Shih H-M, Chang C-C, Kuo H-Y, Lin D-Y (2007) Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 35:1397–1400PubMedCrossRef Shih H-M, Chang C-C, Kuo H-Y, Lin D-Y (2007) Daxx mediates SUMO-dependent transcriptional control and subnuclear compartmentalization. Biochem Soc Trans 35:1397–1400PubMedCrossRef
111.
go back to reference Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661PubMedCrossRef Lallemand-Breitenbach V, de The H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661PubMedCrossRef
112.
go back to reference Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT (1999) Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 73:1001–1009PubMed Swindle CS, Zou N, Van Tine BA, Shaw GM, Engler JA, Chow LT (1999) Human papillomavirus DNA replication compartments in a transient DNA replication system. J Virol 73:1001–1009PubMed
113.
go back to reference Day PM, Baker CC, Lowy DR, Schiller JT (2004) Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA 101:14252–14257PubMedCrossRef Day PM, Baker CC, Lowy DR, Schiller JT (2004) Establishment of papillomavirus infection is enhanced by promyelocytic leukemia protein (PML) expression. Proc Natl Acad Sci USA 101:14252–14257PubMedCrossRef
114.
go back to reference Görnemann J, Hofmann T, Will H, Müller M (2002) Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology 303:69–78PubMedCrossRef Görnemann J, Hofmann T, Will H, Müller M (2002) Interaction of human papillomavirus type 16 L2 with cellular proteins: identification of novel nuclear body-associated proteins. Virology 303:69–78PubMedCrossRef
115.
go back to reference Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752PubMed Zhong S, Müller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP (2000) Role of SUMO-1-modified PML in nuclear body formation. Blood 95:2748–2752PubMed
116.
go back to reference Van Damme E, Laukens K, Dang TH, Van Ostade X (2010) A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67PubMedCrossRef Van Damme E, Laukens K, Dang TH, Van Ostade X (2010) A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 6:51–67PubMedCrossRef
117.
go back to reference Marusic MB, Mencin N, Licen M, Banks L, Grm HS (2010) Modification of human papillomavirus minor capsid protein L2 by sumoylation. J Virol 84:11585–11589PubMedCrossRef Marusic MB, Mencin N, Licen M, Banks L, Grm HS (2010) Modification of human papillomavirus minor capsid protein L2 by sumoylation. J Virol 84:11585–11589PubMedCrossRef
Metadata
Title
Host-cell factors involved in papillomavirus entry
Authors
Luise Florin
Martin Sapp
Gilles A. Spoden
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Medical Microbiology and Immunology / Issue 4/2012
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-012-0270-1

Other articles of this Issue 4/2012

Medical Microbiology and Immunology 4/2012 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.