Skip to main content
Top
Published in: Medical Microbiology and Immunology 4/2012

01-11-2012 | Review

Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance

Authors: Kordula Kautz-Neu, Kirsten Schwonberg, Michael R. Fischer, Anja I. Schermann, Esther von Stebut

Published in: Medical Microbiology and Immunology | Issue 4/2012

Login to get access

Abstract

Leishmaniasis is one of the most important infectious diseases worldwide; a vaccine is still not available. Infected dendritic cells (DC) are critical for the initiation of protective Th1 immunity against Leishmania major. Phagocytosis of L. major by DC leads to cell activation, IL-12 release and (cross-) presentation of Leishmania antigens by DC. Here, we review the role of Fcγ receptor- and B cell-mediated processes for parasite internalization by DC. In addition, the early events after parasite inoculation that consist of mast cell activation, parasite uptake by skin-resident macrophages (MΦ), followed by neutrophil and monocyte immigration and DC activation are described. All these events contribute significantly to antigen processing in infected DC and influence resulting T cell priming in vivo. A detailed understanding of the role of DC for the development of efficient anti-Leishmania immunity will aid the development of potent anti-parasite drugs and/or vaccines.
Literature
2.
go back to reference Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858PubMedCrossRef Sacks D, Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845–858PubMedCrossRef
3.
go back to reference Bogdan C (2012) Leishmaniasis in rheumatology, haematology and oncology: epidemiological, immunological and clinical aspects and caveats. Ann Rheum Dis 71:60–66CrossRef Bogdan C (2012) Leishmaniasis in rheumatology, haematology and oncology: epidemiological, immunological and clinical aspects and caveats. Ann Rheum Dis 71:60–66CrossRef
4.
go back to reference *von Stebut E (2007) Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol 17:115–122 *von Stebut E (2007) Immunology of cutaneous leishmaniasis: the role of mast cells, phagocytes and dendritic cells for protective immunity. Eur J Dermatol 17:115–122
5.
go back to reference Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969–977PubMed Belkaid Y, Mendez S, Lira R, Kadambi N, Milon G, Sacks D (2000) A natural model of Leishmania major infection reveals a prolonged “silent” phase of parasite amplification in the skin before the onset of lesion formation and immunity. J Immunol 165:969–977PubMed
6.
go back to reference Peters NC, Sacks DL (2009) The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis. Cell Microbiol 11:1290–1296PubMedCrossRef Peters NC, Sacks DL (2009) The impact of vector-mediated neutrophil recruitment on cutaneous leishmaniasis. Cell Microbiol 11:1290–1296PubMedCrossRef
7.
go back to reference *von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC (1998) Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med 188:1547–1552CrossRef *von Stebut E, Belkaid Y, Jakob T, Sacks DL, Udey MC (1998) Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J Exp Med 188:1547–1552CrossRef
8.
go back to reference *von Stebut E, Belkaid Y, Nguyen BV, Cushing M, Sacks DL, Udey MC (2000) Leishmania major-infected murine Langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur J Immunol 30:3498–3506CrossRef *von Stebut E, Belkaid Y, Nguyen BV, Cushing M, Sacks DL, Udey MC (2000) Leishmania major-infected murine Langerhans cell-like dendritic cells from susceptible mice release IL-12 after infection and vaccinate against experimental cutaneous Leishmaniasis. Eur J Immunol 30:3498–3506CrossRef
9.
go back to reference Misslitz AC, Bonhagen K, Harbecke D, Lippuner C, Kamradt T, Aebischer T (2004) Two waves of antigen-containing dendritic cells in vivo in experimental Leishmania major infection. Eur J Immunol 34:715–725PubMedCrossRef Misslitz AC, Bonhagen K, Harbecke D, Lippuner C, Kamradt T, Aebischer T (2004) Two waves of antigen-containing dendritic cells in vivo in experimental Leishmania major infection. Eur J Immunol 34:715–725PubMedCrossRef
10.
go back to reference Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D, Shortman K, Handman E (2004) Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun 72:1991–2001PubMedCrossRef Baldwin T, Henri S, Curtis J, O’Keeffe M, Vremec D, Shortman K, Handman E (2004) Dendritic cell populations in Leishmania major-infected skin and draining lymph nodes. Infect Immun 72:1991–2001PubMedCrossRef
11.
go back to reference *von Stebut E (2007) Cutaneous Leishmania infection: progress in pathogenesis research and experimental therapy. Exp Dermatol 16:340–346CrossRef *von Stebut E (2007) Cutaneous Leishmania infection: progress in pathogenesis research and experimental therapy. Exp Dermatol 16:340–346CrossRef
12.
go back to reference *Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, Waisman A, Nigg AP, Knop J, Udey MC, von Stebut E (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcγ receptors and facilitates acquisition of protective immunity. J Exp Med 203:177–188PubMedCrossRef *Woelbing F, Kostka SL, Moelle K, Belkaid Y, Sunderkoetter C, Verbeek S, Waisman A, Nigg AP, Knop J, Udey MC, von Stebut E (2006) Uptake of Leishmania major by dendritic cells is mediated by Fcγ receptors and facilitates acquisition of protective immunity. J Exp Med 203:177–188PubMedCrossRef
13.
go back to reference Locksley RM, Fowell DJ, Shinkai K, Wakil AE, Lacy D, Bix M (1998) Development of CD4+ effector T cells and susceptibility to infectious diseases. Adv Exp Med Biol 452:45–52PubMedCrossRef Locksley RM, Fowell DJ, Shinkai K, Wakil AE, Lacy D, Bix M (1998) Development of CD4+ effector T cells and susceptibility to infectious diseases. Adv Exp Med Biol 452:45–52PubMedCrossRef
14.
go back to reference Blank C, Fuchs H, Rappersberger K, Röllinghoff M, Moll H (1993) Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J Infect Dis 167:418–425PubMedCrossRef Blank C, Fuchs H, Rappersberger K, Röllinghoff M, Moll H (1993) Parasitism of epidermal Langerhans cells in experimental cutaneous leishmaniasis with Leishmania major. J Infect Dis 167:418–425PubMedCrossRef
15.
go back to reference Flohé SB, Bauer C, Flohé S, Moll H (1998) Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Eur J Immunol 28:3800–3811PubMedCrossRef Flohé SB, Bauer C, Flohé S, Moll H (1998) Antigen-pulsed epidermal Langerhans cells protect susceptible mice from infection with the intracellular parasite Leishmania major. Eur J Immunol 28:3800–3811PubMedCrossRef
16.
go back to reference Ahuja SS, Mummidi S, Malech HL, Ahuja SK (1998) Human dendritic cell (DC)-based anti-infective therapy: engineering DCs to secrete functional IFN-γ and IL-12. J Immunol 161:868–876PubMed Ahuja SS, Mummidi S, Malech HL, Ahuja SK (1998) Human dendritic cell (DC)-based anti-infective therapy: engineering DCs to secrete functional IFN-γ and IL-12. J Immunol 161:868–876PubMed
17.
go back to reference *Belkaid Y, von Stebut E, Mendez S, Lira R, Caler E, Bertholet S, Udey MC, Sacks D (2002) CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168:3992–4000PubMed *Belkaid Y, von Stebut E, Mendez S, Lira R, Caler E, Bertholet S, Udey MC, Sacks D (2002) CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J Immunol 168:3992–4000PubMed
18.
go back to reference Schönlau F, Scharffetter-Kochanek K, Grabbe S, Pietz B, Sorg C, Sunderkötter C (2000) In experimental leishmaniasis deficiency of CD18 results in parasite dissemination associated with altered macrophage functions and incomplete Th1 cell response. Eur J Immunol 30:2729–2740PubMedCrossRef Schönlau F, Scharffetter-Kochanek K, Grabbe S, Pietz B, Sorg C, Sunderkötter C (2000) In experimental leishmaniasis deficiency of CD18 results in parasite dissemination associated with altered macrophage functions and incomplete Th1 cell response. Eur J Immunol 30:2729–2740PubMedCrossRef
19.
20.
go back to reference Domínguez M, Toraño A (1999) Immune adherence-mediated opsonophagocytosis: the mechanism of Leishmania infection. J Exp Med 189:25–35PubMedCrossRef Domínguez M, Toraño A (1999) Immune adherence-mediated opsonophagocytosis: the mechanism of Leishmania infection. J Exp Med 189:25–35PubMedCrossRef
21.
go back to reference *Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182:3039–3046PubMedCrossRef *Lopez Kostka S, Dinges S, Griewank K, Iwakura Y, Udey MC, von Stebut E (2009) IL-17 promotes progression of cutaneous leishmaniasis in susceptible mice. J Immunol 182:3039–3046PubMedCrossRef
22.
go back to reference Miles SA, Conrad SM, Alves RG, Jeronimo SM, Mosser DM (2005) A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med 201:747–754PubMedCrossRef Miles SA, Conrad SM, Alves RG, Jeronimo SM, Mosser DM (2005) A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J Exp Med 201:747–754PubMedCrossRef
23.
go back to reference Editor’s Choice (2006) Primed by parasites. Science 311:579–581 Editor’s Choice (2006) Primed by parasites. Science 311:579–581
24.
go back to reference Wanderley JL, Barcinski MA (2010) Apoptosis and apoptotic mimicry: the Leishmania connection. Cell Mol Life Sci 67:1653–1659PubMedCrossRef Wanderley JL, Barcinski MA (2010) Apoptosis and apoptotic mimicry: the Leishmania connection. Cell Mol Life Sci 67:1653–1659PubMedCrossRef
25.
go back to reference Wanderley JL, Moreira ME, Benjamin A, Bonomo AC, Barcinski MA (2006) Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 176:1834–1839PubMed Wanderley JL, Moreira ME, Benjamin A, Bonomo AC, Barcinski MA (2006) Mimicry of apoptotic cells by exposing phosphatidylserine participates in the establishment of amastigotes of Leishmania (L) amazonensis in mammalian hosts. J Immunol 176:1834–1839PubMed
26.
go back to reference *Maurer M, Lopez Kostka S, Siebenhaar F, Moelle K, Metz M, Knop J, von Stebut E (2006) Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 20:2460–2467PubMedCrossRef *Maurer M, Lopez Kostka S, Siebenhaar F, Moelle K, Metz M, Knop J, von Stebut E (2006) Skin mast cells control T cell-dependent host defense in Leishmania major infections. FASEB J 20:2460–2467PubMedCrossRef
27.
go back to reference Wershil BK, Theodos CM, Galli SJ, Titus RG (1994) Mast cells augment lesion size and persistence during experimental Leishmania major infection in the mouse. J Immunol 152:4563–4571PubMed Wershil BK, Theodos CM, Galli SJ, Titus RG (1994) Mast cells augment lesion size and persistence during experimental Leishmania major infection in the mouse. J Immunol 152:4563–4571PubMed
28.
go back to reference Bidri M, Vouldoukis I, Mossalayi MD, Debre P, Guillosson JJ, Mazier D, Arock M (1997) Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol 19:475–483PubMedCrossRef Bidri M, Vouldoukis I, Mossalayi MD, Debre P, Guillosson JJ, Mazier D, Arock M (1997) Evidence for direct interaction between mast cells and Leishmania parasites. Parasite Immunol 19:475–483PubMedCrossRef
29.
go back to reference Grimaldi G Jr, Soares MJ, Moriearty PL (1984) Tissue eosinophilia and Leishmania mexicana eosinophil interactions in murine cutaneous leishmaniasis. Parasite Immunol 6:397–408PubMedCrossRef Grimaldi G Jr, Soares MJ, Moriearty PL (1984) Tissue eosinophilia and Leishmania mexicana eosinophil interactions in murine cutaneous leishmaniasis. Parasite Immunol 6:397–408PubMedCrossRef
30.
go back to reference Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104PubMedCrossRef Grimbaldeston MA, Nakae S, Kalesnikoff J, Tsai M, Galli SJ (2007) Mast cell-derived interleukin 10 limits skin pathology in contact dermatitis and chronic irradiation with ultraviolet B. Nat Immunol 8:1095–1104PubMedCrossRef
31.
go back to reference *Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893PubMedCrossRef *Dudeck A, Suender CA, Kostka SL, von Stebut E, Maurer M (2011) Mast cells promote Th1 and Th17 responses by modulating dendritic cell maturation and function. Eur J Immunol 41:1883–1893PubMedCrossRef
32.
go back to reference Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–974PubMedCrossRef Peters NC, Egen JG, Secundino N, Debrabant A, Kimblin N, Kamhawi S, Lawyer P, Fay MP, Germain RN, Sacks D (2008) In vivo imaging reveals an essential role for neutrophils in leishmaniasis transmitted by sand flies. Science 321:970–974PubMedCrossRef
33.
go back to reference Laskay T, van Zandbergen G, Solbach W (2008) Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: apoptosis as infection-promoting factor. Immunobiology 213:183–191PubMedCrossRef Laskay T, van Zandbergen G, Solbach W (2008) Neutrophil granulocytes as host cells and transport vehicles for intracellular pathogens: apoptosis as infection-promoting factor. Immunobiology 213:183–191PubMedCrossRef
34.
35.
go back to reference Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL (2012) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-Leishmania response. PLoS Pathog 8:e1002536PubMedCrossRef Ribeiro-Gomes FL, Peters NC, Debrabant A, Sacks DL (2012) Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-Leishmania response. PLoS Pathog 8:e1002536PubMedCrossRef
36.
go back to reference *von Stebut E, Metz M, Milon G, Knop J, Maurer M (2003) Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1α/β released from neutrophils recruited by mast cell-derived TNFα. Blood 101:210–215CrossRef *von Stebut E, Metz M, Milon G, Knop J, Maurer M (2003) Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1α/β released from neutrophils recruited by mast cell-derived TNFα. Blood 101:210–215CrossRef
37.
go back to reference Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112PubMed Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112PubMed
38.
go back to reference Bryce PJ, Miller ML, Miyajima I, Tsai M, Galli SJ, Oettgen HC (2004) Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20:381–392PubMedCrossRef Bryce PJ, Miller ML, Miyajima I, Tsai M, Galli SJ, Oettgen HC (2004) Immune sensitization in the skin is enhanced by antigen-independent effects of IgE. Immunity 20:381–392PubMedCrossRef
39.
go back to reference Jawdat DM, Albert EJ, Rowden G, Haidl ID, Marshall JS (2004) IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 173:5275–5282PubMed Jawdat DM, Albert EJ, Rowden G, Haidl ID, Marshall JS (2004) IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 173:5275–5282PubMed
40.
41.
go back to reference Nakano N, Nishiyama C, Kanada S, Niwa Y, Shimokawa N, Ushio H, Nishiyama M, Okumura K, Ogawa H (2007) Involvement of mast cells in IL-12/23 p40 production is essential for survival from polymicrobial infections. Blood 109:4846–4855PubMedCrossRef Nakano N, Nishiyama C, Kanada S, Niwa Y, Shimokawa N, Ushio H, Nishiyama M, Okumura K, Ogawa H (2007) Involvement of mast cells in IL-12/23 p40 production is essential for survival from polymicrobial infections. Blood 109:4846–4855PubMedCrossRef
42.
go back to reference Mitchell GF (1983) Murine cutaneous leishmaniasis: resistance in reconstituted nude mice and several F1 hybrids infected with Leishmania tropica major. J Immunogenet 10:395–412PubMedCrossRef Mitchell GF (1983) Murine cutaneous leishmaniasis: resistance in reconstituted nude mice and several F1 hybrids infected with Leishmania tropica major. J Immunogenet 10:395–412PubMedCrossRef
43.
go back to reference Holaday BJ, Sadick MD, Wang Z-E, Reiner SL, Heinzel FP, Parslow TG, Locksley RM (1991) Reconstitution of Leishmania immunity in severe combined immunodeficient mice using Th1- and Th2-like lines. J Immunol 147:1653–1658PubMed Holaday BJ, Sadick MD, Wang Z-E, Reiner SL, Heinzel FP, Parslow TG, Locksley RM (1991) Reconstitution of Leishmania immunity in severe combined immunodeficient mice using Th1- and Th2-like lines. J Immunol 147:1653–1658PubMed
44.
go back to reference Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N (1993) Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261:1448–1451PubMedCrossRef Locksley RM, Reiner SL, Hatam F, Littman DR, Killeen N (1993) Helper T cells without CD4: control of leishmaniasis in CD4-deficient mice. Science 261:1448–1451PubMedCrossRef
45.
go back to reference Titus RG, Ceredig R, Cerottini JC, Louis JA (1985) Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J Immunol 135:2108–2114PubMed Titus RG, Ceredig R, Cerottini JC, Louis JA (1985) Therapeutic effect of anti-L3T4 monoclonal antibody GK1.5 on cutaneous leishmaniasis in genetically-susceptible BALB/c mice. J Immunol 135:2108–2114PubMed
46.
go back to reference Titus RG, Milon G, Marchal G, Vassalli P, Cerottini JC, Louis JA (1987) Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur J Immunol 17:1429–1433PubMedCrossRef Titus RG, Milon G, Marchal G, Vassalli P, Cerottini JC, Louis JA (1987) Involvement of specific Lyt-2+ T cells in the immunological control of experimentally induced murine cutaneous leishmaniasis. Eur J Immunol 17:1429–1433PubMedCrossRef
47.
go back to reference Heinzel FP, Sadick MD, Mutha SS, Locksley RM (1991) Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci USA 88:7011–7015PubMedCrossRef Heinzel FP, Sadick MD, Mutha SS, Locksley RM (1991) Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci USA 88:7011–7015PubMedCrossRef
48.
go back to reference Mougneau E, Altare F, Wakil AE, Zheng S, Coppola T, Wang ZE, Waldmann R, Locksley RM, Glaichenhaus N (1995) Expression cloning of a protective Leishmania antigen. Science 268:563–566PubMedCrossRef Mougneau E, Altare F, Wakil AE, Zheng S, Coppola T, Wang ZE, Waldmann R, Locksley RM, Glaichenhaus N (1995) Expression cloning of a protective Leishmania antigen. Science 268:563–566PubMedCrossRef
49.
go back to reference Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72PubMedCrossRef Heinzel FP, Sadick MD, Holaday BJ, Coffman RL, Locksley RM (1989) Reciprocal expression of interferon gamma or interleukin 4 during the resolution or progression of murine leishmaniasis. Evidence for expansion of distinct helper T cell subsets. J Exp Med 169:59–72PubMedCrossRef
50.
go back to reference Müller I, Kropf P, Louis JA, Milon G (1994) Expansion of gamma interferon-producing CD8+ T cells following secondary infection of mice immune to Leishmania major. Infect Immun 62:2575–2581PubMed Müller I, Kropf P, Louis JA, Milon G (1994) Expansion of gamma interferon-producing CD8+ T cells following secondary infection of mice immune to Leishmania major. Infect Immun 62:2575–2581PubMed
51.
go back to reference Erb K, Blank C, Ritter U, Bluethmann H, Moll H (1996) Leishmania major infection in major histocompatibility complex class II-deficient mice: CD8+ T cells do not mediate a protective immune response. Immunobiology 195:243–260PubMedCrossRef Erb K, Blank C, Ritter U, Bluethmann H, Moll H (1996) Leishmania major infection in major histocompatibility complex class II-deficient mice: CD8+ T cells do not mediate a protective immune response. Immunobiology 195:243–260PubMedCrossRef
52.
go back to reference Uzonna JE, Joyce KL, Scott P (2004) Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells. J Exp Med 199:1559–1566PubMedCrossRef Uzonna JE, Joyce KL, Scott P (2004) Low dose Leishmania major promotes a transient T helper cell type 2 response that is down-regulated by interferon gamma-producing CD8+ T cells. J Exp Med 199:1559–1566PubMedCrossRef
53.
go back to reference *Kronenberg K, Brosch S, Butsch F, Tada Y, Shibagaki N, Udey MC, von Stebut E (2010) Vaccination with TAT-antigen fusion protein induces protective, CD8+ T cell-mediated immunity against Leishmania major. J Invest Dermatol 130:2602–2610PubMedCrossRef *Kronenberg K, Brosch S, Butsch F, Tada Y, Shibagaki N, Udey MC, von Stebut E (2010) Vaccination with TAT-antigen fusion protein induces protective, CD8+ T cell-mediated immunity against Leishmania major. J Invest Dermatol 130:2602–2610PubMedCrossRef
54.
go back to reference Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667PubMedCrossRef Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P (1987) Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667PubMedCrossRef
55.
go back to reference Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483PubMedCrossRef Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM (1990) Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483PubMedCrossRef
56.
go back to reference Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana CJ (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol 145:2833–2838PubMed Kripke ML, Munn CG, Jeevan A, Tang JM, Bucana CJ (1990) Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol 145:2833–2838PubMed
57.
go back to reference Sato N, Ahuja SK, Quinones M, Kostecki V, Reddick RL, Melby PC, Kuziel WA, Ahuja SS (2000) CC chemokine receptor (CCR) 2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J Exp Med 192:205–218PubMedCrossRef Sato N, Ahuja SK, Quinones M, Kostecki V, Reddick RL, Melby PC, Kuziel WA, Ahuja SS (2000) CC chemokine receptor (CCR) 2 is required for Langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells. Absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, b cell outgrowth, and sustained neutrophilic inflammation. J Exp Med 192:205–218PubMedCrossRef
58.
go back to reference Moll H, Fuchs H, Blank C, Röllinghoff M (1993) Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23:1595–1601PubMedCrossRef Moll H, Fuchs H, Blank C, Röllinghoff M (1993) Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol 23:1595–1601PubMedCrossRef
59.
go back to reference Reiner SL, Zheng S, Wang Z-E, Stowring L, Locksley RM (1994) Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J Exp Med 179:447–456PubMedCrossRef Reiner SL, Zheng S, Wang Z-E, Stowring L, Locksley RM (1994) Leishmania promastigotes evade interleukin 12 (IL-12) induction by macrophages and stimulate a broad range of cytokines from CD4+ T cells during initiation of infection. J Exp Med 179:447–456PubMedCrossRef
60.
go back to reference Carrera L, Gazzinelli RT, Badolato R, Hieny S, Müller W, Kühn R, Sacks DL (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183:515–526PubMedCrossRef Carrera L, Gazzinelli RT, Badolato R, Hieny S, Müller W, Kühn R, Sacks DL (1996) Leishmania promastigotes selectively inhibit interleukin 12 induction in bone marrow-derived macrophages from susceptible and resistant mice. J Exp Med 183:515–526PubMedCrossRef
61.
go back to reference Ramachandra L, Boom WH, Harding CV (2008) Class II MHC antigen processing in phagosomes. Methods Mol Biol 445:353–377PubMedCrossRef Ramachandra L, Boom WH, Harding CV (2008) Class II MHC antigen processing in phagosomes. Methods Mol Biol 445:353–377PubMedCrossRef
62.
go back to reference Bertholet S, Debrabant A, Afrin F, Caler E, Mendez S, Tabbara KS, Belkaid Y, Sacks DL (2005) Antigen requirements for efficient priming of CD8+ T cells by Leishmania major-infected dendritic cells. Infect Immun 73:6620–6628PubMedCrossRef Bertholet S, Debrabant A, Afrin F, Caler E, Mendez S, Tabbara KS, Belkaid Y, Sacks DL (2005) Antigen requirements for efficient priming of CD8+ T cells by Leishmania major-infected dendritic cells. Infect Immun 73:6620–6628PubMedCrossRef
63.
go back to reference Miller JF, Kurts C, Allison J, Kosaka H, Carbone F, Heath WR (1998) Induction of peripheral CD8+ T-cell tolerance by cross-presentation of self antigens. Immunol Rev 165:267–277PubMedCrossRef Miller JF, Kurts C, Allison J, Kosaka H, Carbone F, Heath WR (1998) Induction of peripheral CD8+ T-cell tolerance by cross-presentation of self antigens. Immunol Rev 165:267–277PubMedCrossRef
64.
go back to reference den Haan JM, Lehar SM, Bevan MJ (2000) CD8+ but not CD8− dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696CrossRef den Haan JM, Lehar SM, Bevan MJ (2000) CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 192:1685–1696CrossRef
65.
66.
go back to reference Kalergis AM, Ravetch JV (2002) Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med 195:1653–1659PubMedCrossRef Kalergis AM, Ravetch JV (2002) Inducing tumor immunity through the selective engagement of activating Fcgamma receptors on dendritic cells. J Exp Med 195:1653–1659PubMedCrossRef
67.
go back to reference Bertholet S, Goldszmid R, Morrot A, Debrabant A, Afrin F, Collazo-Custodio C, Houde M, Desjardins M, Sher A, Sacks D (2006) Leishmania antigens are presented to CD8+ T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J Immunol 177:3525–3533PubMed Bertholet S, Goldszmid R, Morrot A, Debrabant A, Afrin F, Collazo-Custodio C, Houde M, Desjardins M, Sher A, Sacks D (2006) Leishmania antigens are presented to CD8+ T cells by a transporter associated with antigen processing-independent pathway in vitro and in vivo. J Immunol 177:3525–3533PubMed
68.
go back to reference *Brosch S, Tenzer S, Akkad N, Lorenz B, Schild H, von Stebut E (2012) Priming of Leishmania-reactive CD8+ T cells in vivo does not require LMP7-containing immunoproteasomes. J Invest Dermatol 132:1302–1305PubMedCrossRef *Brosch S, Tenzer S, Akkad N, Lorenz B, Schild H, von Stebut E (2012) Priming of Leishmania-reactive CD8+ T cells in vivo does not require LMP7-containing immunoproteasomes. J Invest Dermatol 132:1302–1305PubMedCrossRef
69.
go back to reference Brewig N, Kissenpfennig A, Malissen B, Veit A, Bickert T, Fleischer B, Mostböck S, Ritter U (2009) Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J Immunol 182:774–783PubMed Brewig N, Kissenpfennig A, Malissen B, Veit A, Bickert T, Fleischer B, Mostböck S, Ritter U (2009) Priming of CD8+ and CD4+ T cells in experimental leishmaniasis is initiated by different dendritic cell subtypes. J Immunol 182:774–783PubMed
70.
go back to reference Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, Schaub RG (1993) Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 177:1797–1802PubMedCrossRef Sypek JP, Chung CL, Mayor SE, Subramanyam JM, Goldman SJ, Sieburth DS, Wolf SF, Schaub RG (1993) Resolution of cutaneous leishmaniasis: interleukin-12 initiates a protective T helper type 1 immune response. J Exp Med 177:1797–1802PubMedCrossRef
71.
go back to reference Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK (1993) Recombinant interleukin-12 cures mice infected with Leishmania major. J Exp Med 177:1505–1509PubMedCrossRef Heinzel FP, Schoenhaut DS, Rerko RM, Rosser LE, Gately MK (1993) Recombinant interleukin-12 cures mice infected with Leishmania major. J Exp Med 177:1505–1509PubMedCrossRef
72.
go back to reference Mattner F, Magram J, Ferrante J, Launois P, Di Padova K, Behin R, Gately MK, Louis JA, Alber G (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559PubMedCrossRef Mattner F, Magram J, Ferrante J, Launois P, Di Padova K, Behin R, Gately MK, Louis JA, Alber G (1996) Genetically resistant mice lacking interleukin-12 are susceptible to infection with Leishmania major and mount a polarized Th2 cell response. Eur J Immunol 26:1553–1559PubMedCrossRef
73.
go back to reference Heinzel FP, Rerko RM, Ahmed F, Pearlman E (1995) Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating leishmaniasis in normally resistant mice. J Immunol 155:730–739PubMed Heinzel FP, Rerko RM, Ahmed F, Pearlman E (1995) Endogenous IL-12 is required for control of Th2 cytokine responses capable of exacerbating leishmaniasis in normally resistant mice. J Immunol 155:730–739PubMed
74.
go back to reference *von Stebut E (2011) Research in practice: different dendritic cell types in skin with various functions—important implications for intradermal vaccines. J Dtsch Dermatol Ges 9:506–509 *von Stebut E (2011) Research in practice: different dendritic cell types in skin with various functions—important implications for intradermal vaccines. J Dtsch Dermatol Ges 9:506–509
75.
go back to reference Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2:1144–1150PubMedCrossRef Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, Dezutter-Dambuyant C, Vicari A, O’Garra A, Biron C, Briere F, Trinchieri G (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2:1144–1150PubMedCrossRef
76.
go back to reference Wu L, Dakic A (2004) Development of dendritic cell system. Cell Mol Immunol 1:112–118PubMed Wu L, Dakic A (2004) Development of dendritic cell system. Cell Mol Immunol 1:112–118PubMed
77.
go back to reference Wilson NS, El Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194PubMedCrossRef Wilson NS, El Sukkari D, Belz GT, Smith CM, Steptoe RJ, Heath WR, Shortman K, Villadangos JA (2003) Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102:2187–2194PubMedCrossRef
78.
go back to reference Leon B, Lopez-Bravo M, Ardavin C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531PubMedCrossRef Leon B, Lopez-Bravo M, Ardavin C (2007) Monocyte-derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against Leishmania. Immunity 26:519–531PubMedCrossRef
79.
go back to reference Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ, Kissenpfennig A, Mattei MG, Ait-Yahia S, Bates EE, Malissen B, Koch F, Fossiez F, Romani N, Lebecque S, Saeland S (2002) Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol 168:782–792PubMed Valladeau J, Clair-Moninot V, Dezutter-Dambuyant C, Pin JJ, Kissenpfennig A, Mattei MG, Ait-Yahia S, Bates EE, Malissen B, Koch F, Fossiez F, Romani N, Lebecque S, Saeland S (2002) Identification of mouse langerin/CD207 in Langerhans cells and some dendritic cells of lymphoid tissues. J Immunol 168:782–792PubMed
80.
go back to reference Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T, Clausen BE, Matsubara K, Letterio J, Steinman RM, Matsuda Y, Inaba K (2002) Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 14:433–444PubMedCrossRef Takahara K, Omatsu Y, Yashima Y, Maeda Y, Tanaka S, Iyoda T, Clausen BE, Matsubara K, Letterio J, Steinman RM, Matsuda Y, Inaba K (2002) Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 14:433–444PubMedCrossRef
81.
go back to reference Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654PubMedCrossRef Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654PubMedCrossRef
82.
go back to reference Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Ait-Yahia S, McLellan AD, Eggert A, Romani N, Saeland S (2005) Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol 125:983–994PubMedCrossRef Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Ait-Yahia S, McLellan AD, Eggert A, Romani N, Saeland S (2005) Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol 125:983–994PubMedCrossRef
83.
go back to reference Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B (2007) The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204:3119–3131PubMedCrossRef Poulin LF, Henri S, de Bovis B, Devilard E, Kissenpfennig A, Malissen B (2007) The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J Exp Med 204:3119–3131PubMedCrossRef
84.
go back to reference Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146PubMedCrossRef Ginhoux F, Collin MP, Bogunovic M, Abel M, Leboeuf M, Helft J, Ochando J, Kissenpfennig A, Malissen B, Grisotto M, Snoeck H, Randolph G, Merad M (2007) Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146PubMedCrossRef
85.
go back to reference Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007) Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204:3147–3156PubMedCrossRef Bursch LS, Wang L, Igyarto B, Kissenpfennig A, Malissen B, Kaplan DH, Hogquist KA (2007) Identification of a novel population of Langerin+ dendritic cells. J Exp Med 204:3147–3156PubMedCrossRef
86.
go back to reference Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, Devilard E, Viret C, Azukizawa H, Kissenpfennig A, Malissen B (2010) CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207:189–206PubMedCrossRef Henri S, Poulin LF, Tamoutounour S, Ardouin L, Guilliams M, de Bovis B, Devilard E, Viret C, Azukizawa H, Kissenpfennig A, Malissen B (2010) CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J Exp Med 207:189–206PubMedCrossRef
87.
go back to reference Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, Clausen BE (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576PubMedCrossRef Bennett CL, van Rijn E, Jung S, Inaba K, Steinman RM, Kapsenberg ML, Clausen BE (2005) Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J Cell Biol 169:569–576PubMedCrossRef
88.
go back to reference Noordegraaf M, Flacher V, Stoitzner P, Clausen BE (2010) Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J Invest Dermatol 130:2752–2759PubMedCrossRef Noordegraaf M, Flacher V, Stoitzner P, Clausen BE (2010) Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J Invest Dermatol 130:2752–2759PubMedCrossRef
89.
go back to reference *Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, von Stebut E (2011) Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 208:885–891PubMedCrossRef *Kautz-Neu K, Noordegraaf M, Dinges S, Bennett CL, John D, Clausen BE, von Stebut E (2011) Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 208:885–891PubMedCrossRef
90.
go back to reference *von Stebut E, Ehrchen JM, Belkaid Y, Kostka SL, Molle K, Knop J, Sunderkotter C, Udey MC (2003) Interleukin 1α promotes Th1 differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J Exp Med 198:191–199CrossRef *von Stebut E, Ehrchen JM, Belkaid Y, Kostka SL, Molle K, Knop J, Sunderkotter C, Udey MC (2003) Interleukin 1α promotes Th1 differentiation and inhibits disease progression in Leishmania major-susceptible BALB/c mice. J Exp Med 198:191–199CrossRef
91.
go back to reference Filippi C, Hugues S, Cazareth J, Julia V, Glaichenhaus N, Ugolini S (2003) CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J Exp Med 198:201–209PubMedCrossRef Filippi C, Hugues S, Cazareth J, Julia V, Glaichenhaus N, Ugolini S (2003) CD4+ T cell polarization in mice is modulated by strain-specific major histocompatibility complex-independent differences within dendritic cells. J Exp Med 198:201–209PubMedCrossRef
92.
go back to reference *Zahn S, Wirtz S, Birkenbach M, Blumberg RS, Neurath MF, von Stebut E (2005) Impaired Th1 responses in mice deficient in Epstein-Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur J Immunol 35:1106–1112PubMedCrossRef *Zahn S, Wirtz S, Birkenbach M, Blumberg RS, Neurath MF, von Stebut E (2005) Impaired Th1 responses in mice deficient in Epstein-Barr virus-induced gene 3 and challenged with physiological doses of Leishmania major. Eur J Immunol 35:1106–1112PubMedCrossRef
Metadata
Title
Dendritic cells in Leishmania major infections: mechanisms of parasite uptake, cell activation and evidence for physiological relevance
Authors
Kordula Kautz-Neu
Kirsten Schwonberg
Michael R. Fischer
Anja I. Schermann
Esther von Stebut
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Medical Microbiology and Immunology / Issue 4/2012
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-012-0261-2

Other articles of this Issue 4/2012

Medical Microbiology and Immunology 4/2012 Go to the issue