Skip to main content
Top
Published in: Brain Structure and Function 6/2022

09-04-2022 | Magnetic Resonance Imaging | Original Article

Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis

Authors: Daisuke Tsuzuki, Gentaro Taga, Hama Watanabe, Fumitaka Homae

Published in: Brain Structure and Function | Issue 6/2022

Login to get access

Abstract

The human brain spends several years bootstrapping itself through intrinsic and extrinsic modulation, thus gradually developing both spatial organization and functions. Based on previous studies on developmental patterns and inter-individual variability of the corpus callosum (CC), we hypothesized that inherent variations of CC shape among infants emerge, depending on the position within the CC, along the developmental timeline. Here we used longitudinal magnetic resonance imaging data from infancy to toddlerhood and investigated the area, thickness, and shape of the midsagittal plane of the CC by applying multilevel modeling. The shape characteristics were extracted using the Procrustes method. We found nonlinearity, region-dependency, and inter-individual variability, as well as intra-individual consistencies, in CC development. Overall, the growth rate is faster in the first year than in the second year, and the trajectory differs between infants; the direction of CC formation in individual infants was determined within six months and maintained to two years. The anterior and posterior subregions increase in area and thickness faster than other subregions. Moreover, we clarified that the growth rate of the middle part of the CC is faster in the second year than in the first year in some individuals. Since the division of regions exhibiting different tendencies coincides with previously reported divisions based on the diameter of axons that make up the region, our results suggest that subregion-dependent individual variability occurs due to the increase in the diameter of the axon caliber, myelination partly due to experience and axon elimination during the early developmental period.
Appendix
Available only for authorised users
Literature
go back to reference Aboitiz F, Montiel J (2003) One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 36:409–420PubMedCrossRef Aboitiz F, Montiel J (2003) One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 36:409–420PubMedCrossRef
go back to reference Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153PubMedCrossRef Aboitiz F, Scheibel AB, Fisher RS, Zaidel E (1992) Fiber composition of the human corpus callosum. Brain Res 598:143–153PubMedCrossRef
go back to reference Adamson CL, Wood AG, Chen J et al (2011) Thickness profile generation for the corpus callosum using Laplace’s equation. Hum Brain Mapp 32(12):2131–2140PubMedPubMedCentralCrossRef Adamson CL, Wood AG, Chen J et al (2011) Thickness profile generation for the corpus callosum using Laplace’s equation. Hum Brain Mapp 32(12):2131–2140PubMedPubMedCentralCrossRef
go back to reference Almli CR, Rivkin MJ, McKinstry RC, Group BDC et al (2007) The NIH MRI study of normal brain development (Objective-2): newborns, infants, toddlers, and preschoolers. NeuroImage 35:308–325PubMedCrossRef Almli CR, Rivkin MJ, McKinstry RC, Group BDC et al (2007) The NIH MRI study of normal brain development (Objective-2): newborns, infants, toddlers, and preschoolers. NeuroImage 35:308–325PubMedCrossRef
go back to reference Ansado J, Collins L, Fonov V, Garon M, Alexandrov L, Karama S, Evans A, Beauchamp MH (2015) A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Eur J Neurosci 42:1675–1684PubMedCrossRef Ansado J, Collins L, Fonov V, Garon M, Alexandrov L, Karama S, Evans A, Beauchamp MH (2015) A new template to study callosal growth shows specific growth in anterior and posterior regions of the corpus callosum in early childhood. Eur J Neurosci 42:1675–1684PubMedCrossRef
go back to reference Ardekani BA, Figarsky K, Sidtis JJ (2012) Sexual dimorphism in the human corpus callosum: an MRI study using the oasis brain database. Cereb Cortex 23:2514–2520PubMedPubMedCentralCrossRef Ardekani BA, Figarsky K, Sidtis JJ (2012) Sexual dimorphism in the human corpus callosum: an MRI study using the oasis brain database. Cereb Cortex 23:2514–2520PubMedPubMedCentralCrossRef
go back to reference Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ (2014) Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database. Brain Struct Funct 219:343–352PubMedCrossRef Ardekani BA, Bachman AH, Figarsky K, Sidtis JJ (2014) Corpus callosum shape changes in early Alzheimer’s disease: an MRI study using the OASIS brain database. Brain Struct Funct 219:343–352PubMedCrossRef
go back to reference Bachman AH, Lee SH, Sidtis JJ, Ardekani BA (2014) Corpus callosum shape and size changes in early Alzheimer’s disease: a longitudinal MRI study using the OASIS brain database. J Alzheimer’s Dis 39:71–78CrossRef Bachman AH, Lee SH, Sidtis JJ, Ardekani BA (2014) Corpus callosum shape and size changes in early Alzheimer’s disease: a longitudinal MRI study using the OASIS brain database. J Alzheimer’s Dis 39:71–78CrossRef
go back to reference Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRef Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57(1):289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc: Ser B (methodol) 57(1):289–300
go back to reference Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans J, Pike G, Veijola J, Paus T (2017) Structural properties of the human corpus callosum: multimodal assessment and sex differences. Neuroimage 152:108–118PubMedCrossRef Björnholm L, Nikkinen J, Kiviniemi V, Nordström T, Niemelä S, Drakesmith M, Evans J, Pike G, Veijola J, Paus T (2017) Structural properties of the human corpus callosum: multimodal assessment and sex differences. Neuroimage 152:108–118PubMedCrossRef
go back to reference Bookstein FL (1996) Biometrics, biomathematics and the morphometric synthesis. Bull Math Biol 58:313PubMedCrossRef Bookstein FL (1996) Biometrics, biomathematics and the morphometric synthesis. Bull Math Biol 58:313PubMedCrossRef
go back to reference Bruner E, de la Cuetara JM, Colom R, Martin-Loeches M (2012) Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220(4):417–421PubMedPubMedCentralCrossRef Bruner E, de la Cuetara JM, Colom R, Martin-Loeches M (2012) Gender-based differences in the shape of the human corpus callosum are associated with allometric variations. J Anat 220(4):417–421PubMedPubMedCentralCrossRef
go back to reference Catani M, de Schotten MT (2012) Atlas of human brain connections. Oxford University Press, LondonCrossRef Catani M, de Schotten MT (2012) Atlas of human brain connections. Oxford University Press, LondonCrossRef
go back to reference Clarke S, Kraftsik R, van der Loos H, Innocenti GM (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 280(2):213–230PubMedCrossRef Clarke S, Kraftsik R, van der Loos H, Innocenti GM (1989) Forms and measures of adult and developing human corpus callosum: is there sexual dimorphism? J Comp Neurol 280(2):213–230PubMedCrossRef
go back to reference de Santis S, Jones DK, Roebroeck A (2016) Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 130:91–103PubMedCrossRef de Santis S, Jones DK, Roebroeck A (2016) Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter. Neuroimage 130:91–103PubMedCrossRef
go back to reference Dean DC III, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Walker L, Deoni SC (2014) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752PubMedCrossRef Dean DC III, O’Muircheartaigh J, Dirks H, Waskiewicz N, Lehman K, Walker L, Deoni SC (2014) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752PubMedCrossRef
go back to reference Dubb A, Gur R, Avants B, Gee J (2003) Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20:512–519PubMedCrossRef Dubb A, Gur R, Avants B, Gee J (2003) Characterization of sexual dimorphism in the human corpus callosum. Neuroimage 20:512–519PubMedCrossRef
go back to reference Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci 105:4028–4032PubMedPubMedCentralCrossRef Fair DA, Cohen AL, Dosenbach NU, Church JA, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci 105:4028–4032PubMedPubMedCentralCrossRef
go back to reference Fick RH, Wassermann D, Caruyer E, Deriche R (2016) MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134:365–385PubMedCrossRef Fick RH, Wassermann D, Caruyer E, Deriche R (2016) MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. Neuroimage 134:365–385PubMedCrossRef
go back to reference Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci 104:15531–15536PubMedPubMedCentralCrossRef Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M, Lagercrantz H, Aden U (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci 104:15531–15536PubMedPubMedCentralCrossRef
go back to reference Friederici AD, von Cramon DY, Kotz SA (2007) Role of the corpus callosum in speech comprehension: interfacing syntax and prosody. Neuron 53(1):135–145PubMedCrossRef Friederici AD, von Cramon DY, Kotz SA (2007) Role of the corpus callosum in speech comprehension: interfacing syntax and prosody. Neuron 53(1):135–145PubMedCrossRef
go back to reference Friedrich P, Fraenz C, Schlüter C, Ocklenburg S, Mädler B, Güntürkün O, Genç E (2020) The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum. Cereb Cortex 30(4):2042–2056PubMedCrossRef Friedrich P, Fraenz C, Schlüter C, Ocklenburg S, Mädler B, Güntürkün O, Genç E (2020) The relationship between axon density, myelination, and fractional anisotropy in the human corpus callosum. Cereb Cortex 30(4):2042–2056PubMedCrossRef
go back to reference Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci 106:6790–6795PubMedPubMedCentralCrossRef Gao W, Zhu H, Giovanello KS, Smith JK, Shen D, Gilmore JH, Lin W (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci 106:6790–6795PubMedPubMedCentralCrossRef
go back to reference Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W (2011) Temporal and spatial evolution of brain network topology during the first two years of life. PloS One 6:e25278PubMedPubMedCentralCrossRef Gao W, Gilmore JH, Giovanello KS, Smith JK, Shen D, Zhu H, Lin W (2011) Temporal and spatial evolution of brain network topology during the first two years of life. PloS One 6:e25278PubMedPubMedCentralCrossRef
go back to reference Harkins KD, Xu J, Dula AN, Li K, Valentine WM, Gochberg DF, Gore JC, Does MD (2016) The microstructural correlates of T1 in white matter. Magn Reson Med 75:1341–1345PubMedCrossRef Harkins KD, Xu J, Dula AN, Li K, Valentine WM, Gochberg DF, Gore JC, Does MD (2016) The microstructural correlates of T1 in white matter. Magn Reson Med 75:1341–1345PubMedCrossRef
go back to reference Hasan KM, Kamali A, Iftikhar A, Kramer LA, Papanicolaou AC, Fletcher JM, Ewing-Cobbs L (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100PubMedCrossRef Hasan KM, Kamali A, Iftikhar A, Kramer LA, Papanicolaou AC, Fletcher JM, Ewing-Cobbs L (2009) Diffusion tensor tractography quantification of the human corpus callosum fiber pathways across the lifespan. Brain Res 1249:91–100PubMedCrossRef
go back to reference Heath C, Jones E (1971) Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connexions in the marsupial phalanger. J anat 109:253PubMedPubMedCentral Heath C, Jones E (1971) Interhemispheric pathways in the absence of a corpus callosum. An experimental study of commissural connexions in the marsupial phalanger. J anat 109:253PubMedPubMedCentral
go back to reference Hinkley LB, Marco EJ, Findlay AM et al (2012) The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One 7:e39804PubMedPubMedCentralCrossRef Hinkley LB, Marco EJ, Findlay AM et al (2012) The role of corpus callosum development in functional connectivity and cognitive processing. PLoS One 7:e39804PubMedPubMedCentralCrossRef
go back to reference Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994PubMedCrossRef Hofer S, Frahm J (2006) Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage 32:989–994PubMedCrossRef
go back to reference Hofer S, Merboldt KD, Tammer R, Frahm J (2008) Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 18(5):1079–1084PubMedCrossRef Hofer S, Merboldt KD, Tammer R, Frahm J (2008) Rhesus monkey and human share a similar topography of the corpus callosum as revealed by diffusion tensor MRI in vivo. Cereb Cortex 18(5):1079–1084PubMedCrossRef
go back to reference Holloway RL, Anderson PJ, Defendini R, Harper C (1993) Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. Am J Phys Anthropol 92:481–498PubMedCrossRef Holloway RL, Anderson PJ, Defendini R, Harper C (1993) Sexual dimorphism of the human corpus callosum from three independent samples: relative size of the corpus callosum. Am J Phys Anthropol 92:481–498PubMedCrossRef
go back to reference Homae F (2014) A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy. NeuroImage 85:354–362PubMedCrossRef Homae F (2014) A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy. NeuroImage 85:354–362PubMedCrossRef
go back to reference Homae F, Watanabe H, Otobe T, Nakano T, Go T, Konishi Y, Taga G (2010) Development of global cortical networks in early infancy. J Neurosci 30:4877–4882PubMedPubMedCentralCrossRef Homae F, Watanabe H, Otobe T, Nakano T, Go T, Konishi Y, Taga G (2010) Development of global cortical networks in early infancy. J Neurosci 30:4877–4882PubMedPubMedCentralCrossRef
go back to reference Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. NeuroImage 26(1):195–205PubMedCrossRef Huang H, Zhang J, Jiang H, Wakana S, Poetscher L, Miller MI, Mori S (2005) DTI tractography based parcellation of white matter: application to the mid-sagittal morphology of corpus callosum. NeuroImage 26(1):195–205PubMedCrossRef
go back to reference Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA (2015) The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. NeuroImage 106:464–472PubMedCrossRef Huang SY, Nummenmaa A, Witzel T, Duval T, Cohen-Adad J, Wald LL, McNab JA (2015) The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter. NeuroImage 106:464–472PubMedCrossRef
go back to reference Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H (1991) Corpus callosum morphology in attention deficit-hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 24(3):141–146PubMedCrossRef Hynd GW, Semrud-Clikeman M, Lorys AR, Novey ES, Eliopulos D, Lyytinen H (1991) Corpus callosum morphology in attention deficit-hyperactivity disorder: morphometric analysis of MRI. J Learn Disabil 24(3):141–146PubMedCrossRef
go back to reference Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965PubMedCrossRef Innocenti GM, Price DJ (2005) Exuberance in the development of cortical networks. Nat Rev Neurosci 6(12):955–965PubMedCrossRef
go back to reference Jarvis E (2010) Bird brain: evolution. Encycl Neurosci 2:209–215 Jarvis E (2010) Bird brain: evolution. Encycl Neurosci 2:209–215
go back to reference Kelsey CM, Farris K, Grossmann T (2021) Variability in infants’ functional brain network connectivity is associated with differences in affect and behavior. Front Psych 12:896 Kelsey CM, Farris K, Grossmann T (2021) Variability in infants’ functional brain network connectivity is associated with differences in affect and behavior. Front Psych 12:896
go back to reference Klingenberg CP (2011) Morphoj: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRef Klingenberg CP (2011) Morphoj: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRef
go back to reference Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182PubMedPubMedCentralCrossRef Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH (2008) A structural MRI study of human brain development from birth to 2 years. J Neurosci 28:12176–12182PubMedPubMedCentralCrossRef
go back to reference Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26CrossRef Kuznetsova A, Brockhoff PB, Christensen RH (2017) lmerTest package: tests in linear mixed effects models. J Stat Softw 82(13):1–26CrossRef
go back to reference Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374PubMedCrossRef Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 33(2):363–374PubMedCrossRef
go back to reference Lebel C, Deoni S (2018) The development of brain white matter microstructure. NeuroImage 182:207–218PubMedCrossRef Lebel C, Deoni S (2018) The development of brain white matter microstructure. NeuroImage 182:207–218PubMedCrossRef
go back to reference Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52:20–31PubMedCrossRef Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52:20–31PubMedCrossRef
go back to reference Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, Shen D (2012) Mapping region–specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 23:2724–2733PubMedPubMedCentralCrossRef Li G, Nie J, Wang L, Shi F, Lin W, Gilmore JH, Shen D (2012) Mapping region–specific longitudinal cortical surface expansion from birth to 2 years of age. Cereb Cortex 23:2724–2733PubMedPubMedCentralCrossRef
go back to reference Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2013) Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex 24:1289–1300PubMedPubMedCentralCrossRef Li G, Nie J, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2013) Mapping longitudinal hemispheric structural asymmetries of the human cerebral cortex from birth to 2 years of age. Cereb Cortex 24:1289–1300PubMedPubMedCentralCrossRef
go back to reference Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014) Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 34:4228–4238PubMedPubMedCentralCrossRef Li G, Wang L, Shi F, Lyall AE, Lin W, Gilmore JH, Shen D (2014) Mapping longitudinal development of local cortical gyrification in infants from birth to 2 years of age. J Neurosci 34:4228–4238PubMedPubMedCentralCrossRef
go back to reference Luders E, Narr KL, Bilder RM, Thompson PM, Szeszko PR, Hamilton L, Toga AW (2007) Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37:1457–1464PubMedCrossRef Luders E, Narr KL, Bilder RM, Thompson PM, Szeszko PR, Hamilton L, Toga AW (2007) Positive correlations between corpus callosum thickness and intelligence. Neuroimage 37:1457–1464PubMedCrossRef
go back to reference Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M (2014) The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 137:e268–e268PubMedCrossRef Men W, Falk D, Sun T, Chen W, Li J, Yin D, Zang L, Fan M (2014) The corpus callosum of Albert Einstein’s brain: another clue to his high intelligence? Brain 137:e268–e268PubMedCrossRef
go back to reference Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566PubMedCrossRef Neubauer S, Gunz P, Hublin J-J (2010) Endocranial shape changes during growth in chimpanzees and humans: a morphometric analysis of unique and shared aspects. J Hum Evol 59:555–566PubMedCrossRef
go back to reference Nieuwenhuys R, Hans J, Nicholson C (2014) The central nervous system of vertebrates. Springer, Berlin Nieuwenhuys R, Hans J, Nicholson C (2014) The central nervous system of vertebrates. Springer, Berlin
go back to reference Oishi K, Faria AV, van Zijl PC, Mori S (2010) MRI atlas of human white matter, 2nd edn. Academic Press, London Oishi K, Faria AV, van Zijl PC, Mori S (2010) MRI atlas of human white matter, 2nd edn. Academic Press, London
go back to reference Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72(1):26–35PubMedCrossRef Paus T (2010) Growth of white matter in the adolescent brain: myelin or axon? Brain Cogn 72(1):26–35PubMedCrossRef
go back to reference Peters M, Oeltze S, Seminowicz D, Steinmetz H, Koeneke S, J¨ancke L (2002) Division of the corpus callosum into subregions. Brain Cogn 50:62–72PubMedCrossRef Peters M, Oeltze S, Seminowicz D, Steinmetz H, Koeneke S, J¨ancke L (2002) Division of the corpus callosum into subregions. Brain Cogn 50:62–72PubMedCrossRef
go back to reference Prendergast DM, Ardekani B, Ikuta T, John M, Peters B, DeRosse P, Wellington R, Malhotra AK, Szeszko PR (2015) Age and sex effects on corpus callosum morphology across the lifespan. Hum Brain Mapp 36(7):2691–2702PubMedPubMedCentralCrossRef Prendergast DM, Ardekani B, Ikuta T, John M, Peters B, DeRosse P, Wellington R, Malhotra AK, Szeszko PR (2015) Age and sex effects on corpus callosum morphology across the lifespan. Hum Brain Mapp 36(7):2691–2702PubMedPubMedCentralCrossRef
go back to reference Reynolds JE, Grohs MN, Dewey D, Lebel C (2019) Global and regional white matter development in early childhood. Neuroimage 196:49–58PubMedCrossRef Reynolds JE, Grohs MN, Dewey D, Lebel C (2019) Global and regional white matter development in early childhood. Neuroimage 196:49–58PubMedCrossRef
go back to reference Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. NeuroImage 68:236–247PubMedCrossRef Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. NeuroImage 68:236–247PubMedCrossRef
go back to reference Sakai T, Komaki Y, Hata J et al (2017a) Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neurosci Res 122:25–34PubMedCrossRef Sakai T, Komaki Y, Hata J et al (2017a) Elucidation of developmental patterns of marmoset corpus callosum through a comparative MRI in marmosets, chimpanzees, and humans. Neurosci Res 122:25–34PubMedCrossRef
go back to reference Sakai T, Mikami A, Suzuki J, Miyabe-Nishiwaki T, Matsui M, Tomonaga M, Hamada Y, Matsuzawa T, Okano H, Oishi K (2017b) Developmental trajectory of the corpus callosum from infancy to the juvenile stage: comparative MRI between chimpanzees and humans. PloS One 12:e0179624PubMedPubMedCentralCrossRef Sakai T, Mikami A, Suzuki J, Miyabe-Nishiwaki T, Matsui M, Tomonaga M, Hamada Y, Matsuzawa T, Okano H, Oishi K (2017b) Developmental trajectory of the corpus callosum from infancy to the juvenile stage: comparative MRI between chimpanzees and humans. PloS One 12:e0179624PubMedPubMedCentralCrossRef
go back to reference Schmied A, Soda T, Gerig G, Styner M, Swanson MR, Elison JT, Estes AM (2020) Sex differences associated with corpus callosum development in human infants: a longitudinal multimodal imaging study. NeuroImage 215:116821PubMedCrossRef Schmied A, Soda T, Gerig G, Styner M, Swanson MR, Elison JT, Estes AM (2020) Sex differences associated with corpus callosum development in human infants: a longitudinal multimodal imaging study. NeuroImage 215:116821PubMedCrossRef
go back to reference Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33(3):1282–1290PubMedPubMedCentralCrossRef Steele CJ, Bailey JA, Zatorre RJ, Penhune VB (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci 33(3):1282–1290PubMedPubMedCentralCrossRef
go back to reference Stephens RL, Langworthy BW, Short SJ, Girault JB, Styner MA, Gilmore JH (2020) White matter development from birth to 6 years of age: a longitudinal study. Cereb Cortex 30(12):6152–6168PubMedPubMedCentralCrossRef Stephens RL, Langworthy BW, Short SJ, Girault JB, Styner MA, Gilmore JH (2020) White matter development from birth to 6 years of age: a longitudinal study. Cereb Cortex 30(12):6152–6168PubMedPubMedCentralCrossRef
go back to reference Taga G, Watanabe H, Homae F (2018) Developmental changes in cortical sensory processing during wakefulness and sleep. NeuroImage 178:519–530PubMedCrossRef Taga G, Watanabe H, Homae F (2018) Developmental changes in cortical sensory processing during wakefulness and sleep. NeuroImage 178:519–530PubMedCrossRef
go back to reference Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K (2015) Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PloS One 10:e0118760PubMedPubMedCentralCrossRef Tanaka-Arakawa MM, Matsui M, Tanaka C, Uematsu A, Uda S, Miura K, Sakai T, Noguchi K (2015) Developmental changes in the corpus callosum from infancy to early adulthood: a structural magnetic resonance imaging study. PloS One 10:e0118760PubMedPubMedCentralCrossRef
go back to reference Tarui T, Madan N, Farhat N et al (2017) Disorganized patterns of sulcal position in fetal brains with agenesis of corpus callosum. Cereb Cortex 28:3192–3203PubMedCentralCrossRef Tarui T, Madan N, Farhat N et al (2017) Disorganized patterns of sulcal position in fetal brains with agenesis of corpus callosum. Cereb Cortex 28:3192–3203PubMedCentralCrossRef
go back to reference Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C (2020) Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. NeuroImage 210:116533PubMedCrossRef Tétreault P, Harkins KD, Baron CA, Stobbe R, Does MD, Beaulieu C (2020) Diffusion time dependency along the human corpus callosum and exploration of age and sex differences as assessed by oscillating gradient spin-echo diffusion tensor imaging. NeuroImage 210:116533PubMedCrossRef
go back to reference Tsuzuki D, Homae F, Taga G, Watanabe H, Matsui M, Dan I (2017) Macroanatomical landmarks featuring junctions of major sulci and fissures and scalp landmarks based on the international 10–10 system for analyzing lateral cortical development of infants. Front Neurosci 11:394PubMedPubMedCentralCrossRef Tsuzuki D, Homae F, Taga G, Watanabe H, Matsui M, Dan I (2017) Macroanatomical landmarks featuring junctions of major sulci and fissures and scalp landmarks based on the international 10–10 system for analyzing lateral cortical development of infants. Front Neurosci 11:394PubMedPubMedCentralCrossRef
go back to reference Van Schependom J, Niemantsverdriet E, Smeets D, Engelborghs S (2018) Callosal circularity as an early marker for Alzheimer’s disease. NeuroImage: Clin 19:516–526CrossRef Van Schependom J, Niemantsverdriet E, Smeets D, Engelborghs S (2018) Callosal circularity as an early marker for Alzheimer’s disease. NeuroImage: Clin 19:516–526CrossRef
go back to reference Vannucci RC, Barron TF, Vannucci SJ (2017) Development of the corpus callosum: an MRI Study. Dev Neurosci 39:97–106PubMedCrossRef Vannucci RC, Barron TF, Vannucci SJ (2017) Development of the corpus callosum: an MRI Study. Dev Neurosci 39:97–106PubMedCrossRef
go back to reference Vidal CN, Nicolson R, DeVito TJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiat 60:218–225PubMedCrossRef Vidal CN, Nicolson R, DeVito TJ et al (2006) Mapping corpus callosum deficits in autism: an index of aberrant cortical connectivity. Biol Psychiat 60:218–225PubMedCrossRef
go back to reference Vinken P, Bruyn G (1969) Handbook of clinical neurology. North Holland, Amsterdam Vinken P, Bruyn G (1969) Handbook of clinical neurology. North Holland, Amsterdam
go back to reference von Plessen K, Lundervold A, Duta N, Heiervang E, Klauschen F, Smievoll AI, Hugdahl K (2002) Less developed corpus callosum in dyslexic subjects—a structural MRI study. Neuropsychologia 40(7):1035–1044CrossRef von Plessen K, Lundervold A, Duta N, Heiervang E, Klauschen F, Smievoll AI, Hugdahl K (2002) Less developed corpus callosum in dyslexic subjects—a structural MRI study. Neuropsychologia 40(7):1035–1044CrossRef
go back to reference Westerhausen R, Fjell AM, Krogsrud SK, Rohani DA, Skranes JS, H˚abergWalhovd AKKB (2016) Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. Neuroimage 139:17–25PubMedCrossRef Westerhausen R, Fjell AM, Krogsrud SK, Rohani DA, Skranes JS, H˚abergWalhovd AKKB (2016) Selective increase in posterior corpus callosum thickness between the age of 4 and 11 years. Neuroimage 139:17–25PubMedCrossRef
go back to reference Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835PubMedCrossRef Witelson SF (1989) Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 112:799–835PubMedCrossRef
go back to reference Witelson SF, Kigar DL, Scamvougeras A et al (2008) Corpus callosum anatomy in right-handed homosexual and heterosexual men. Arch Sex Behav 37(6):857–863PubMedCrossRef Witelson SF, Kigar DL, Scamvougeras A et al (2008) Corpus callosum anatomy in right-handed homosexual and heterosexual men. Arch Sex Behav 37(6):857–863PubMedCrossRef
go back to reference Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, Botteron KN, Elison JT, Dager SR, Estes AM et al (2015) Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 138:2046–2058PubMedPubMedCentralCrossRef Wolff JJ, Gerig G, Lewis JD, Soda T, Styner MA, Vachet C, Botteron KN, Elison JT, Dager SR, Estes AM et al (2015) Altered corpus callosum morphology associated with autism over the first 2 years of life. Brain 138:2046–2058PubMedPubMedCentralCrossRef
go back to reference Yeung MS, Zdunek S, Bergmann O et al (2014) Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–774PubMedCrossRef Yeung MS, Zdunek S, Bergmann O et al (2014) Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–774PubMedCrossRef
go back to reference Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, London Zelditch ML, Swiderski DL, Sheets HD (2012) Geometric morphometrics for biologists: a primer. Academic Press, London
go back to reference Zito G, Luders E, Tomasevic L, Lupoi D, Toga AW, Thompson PM, Rossini PM, Filippi MM, Tecchio F (2014) Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis. Neuroscience 266:47–55PubMedCrossRef Zito G, Luders E, Tomasevic L, Lupoi D, Toga AW, Thompson PM, Rossini PM, Filippi MM, Tecchio F (2014) Inter-hemispheric functional connectivity changes with corpus callosum morphology in multiple sclerosis. Neuroscience 266:47–55PubMedCrossRef
Metadata
Title
Individual variability in the nonlinear development of the corpus callosum during infancy and toddlerhood: a longitudinal MRI analysis
Authors
Daisuke Tsuzuki
Gentaro Taga
Hama Watanabe
Fumitaka Homae
Publication date
09-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2022
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02485-y

Other articles of this Issue 6/2022

Brain Structure and Function 6/2022 Go to the issue