Skip to main content
Top
Published in: Brain Structure and Function 4/2019

Open Access 01-05-2019 | Original Article

Event-related potentials evoked by passive visuospatial perception in rats and humans reveal common denominators in information processing

Authors: M. F. A. Hauser, V. Wiescholleck, J. Colitti-Klausnitzer, C. Bellebaum, Denise Manahan-Vaughan

Published in: Brain Structure and Function | Issue 4/2019

Login to get access

Abstract

In the human cortex, event-related potentials (ERPs) are triggered in response to sensory, cognitive or motor stimuli. Due to the inherent difficulties of conducting invasive mechanistic studies in human subjects, little is known as to the precise neurophysiological mechanisms that lead to their manifestation. By contrast, although much is known about synaptic and neural mechanisms that underlie information processing in rodents, very few studies have addressed to what extent ERPs are comparable in rodents and humans. Here, we explored this by triggering ERPs in both species during the passive observation of visuospatial imagery, shown in an oddball-like manner, using an experimental design that was equivalent. Several ERP-components were identified in the rodent cohort, corresponding, for example, to the human P1, N1, and P2. ERPs that are likely to reflect a rodent N2 and P300 were also detected. Deviance, as well as repetition effects were evident in both species, whereby rodent ERPs displayed more immediate response alterations to repeated stimuli and humans showed more gradual response shifts. These results indicate that humans and rodents may implement similar strategies for the passive perception and initial processing of visuospatial imagery, despite clear differences in their sensory and cognitive capacities.
Literature
go back to reference Bellebaum C, Tettamanti M, Marchetta E, Della Rosa P, Rizzo G, Daum I, Cappa SF (2013) Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex 49:1110–1125CrossRefPubMed Bellebaum C, Tettamanti M, Marchetta E, Della Rosa P, Rizzo G, Daum I, Cappa SF (2013) Neural representations of unfamiliar objects are modulated by sensorimotor experience. Cortex 49:1110–1125CrossRefPubMed
go back to reference Brankačk J, Seidenbecher T, Müller-Gärtner HW (1996) Task-relevant late positive component in rats: Is it related to hippocampal theta rhythm? Hippocampus 6:475–482CrossRefPubMed Brankačk J, Seidenbecher T, Müller-Gärtner HW (1996) Task-relevant late positive component in rats: Is it related to hippocampal theta rhythm? Hippocampus 6:475–482CrossRefPubMed
go back to reference Czigler I, Weisz J, Winkler I (2006) ERPs and deviance detection: visual mismatch negativity to repeated visual stimuli. Neurosci Lett 401:178–182CrossRefPubMed Czigler I, Weisz J, Winkler I (2006) ERPs and deviance detection: visual mismatch negativity to repeated visual stimuli. Neurosci Lett 401:178–182CrossRefPubMed
go back to reference de Bruin NM, Ellenbroek B, van Schaijk WJ,, van Luijtelaar EL, Cools AR, Coenen AM (2001) Sensory gating of auditory evoked potentials in rats: effects of repetitive stimulation and the interstimulus interval. Biol Psychol 55:195–213CrossRefPubMed de Bruin NM, Ellenbroek B, van Schaijk WJ,, van Luijtelaar EL, Cools AR, Coenen AM (2001) Sensory gating of auditory evoked potentials in rats: effects of repetitive stimulation and the interstimulus interval. Biol Psychol 55:195–213CrossRefPubMed
go back to reference Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMed
go back to reference Ehlers CL, Kaneko WM, Robledo P, Lopez A (1994) Long latency event-related potentials in rats: effects of task and stimulus parameters. Neuroscience 62:161–175CrossRef Ehlers CL, Kaneko WM, Robledo P, Lopez A (1994) Long latency event-related potentials in rats: effects of task and stimulus parameters. Neuroscience 62:161–175CrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierachical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierachical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
go back to reference Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 80-:259:100–103CrossRef Gallant JL, Braun J, Van Essen DC (1993) Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 80-:259:100–103CrossRef
go back to reference Ghio M, Schulze P, Suchan B, Bellebaum C (2016) Neural representations of novel objects associated with olfactory experience. Behav Brain Res 308:143–151CrossRefPubMed Ghio M, Schulze P, Suchan B, Bellebaum C (2016) Neural representations of novel objects associated with olfactory experience. Behav Brain Res 308:143–151CrossRefPubMed
go back to reference Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefPubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25CrossRefPubMed
go back to reference Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in the inferotemporal cortex of the monkey. Science 80 166:1303–1306CrossRef Gross CG, Bender DB, Rocha-Miranda CE (1969) Visual receptive fields of neurons in the inferotemporal cortex of the monkey. Science 80 166:1303–1306CrossRef
go back to reference Hopf JM, Vogel E, Woodman G, Heinze HJ, Luck SJ (2002) Localizing visual discrimination processes in time and space. J Neurophysiol 88:2088–2095CrossRefPubMed Hopf JM, Vogel E, Woodman G, Heinze HJ, Luck SJ (2002) Localizing visual discrimination processes in time and space. J Neurophysiol 88:2088–2095CrossRefPubMed
go back to reference Hurlbut BJ (1987) Auditory elicitation of the evoked potential in the rat. Physiol Behav 39:483–487CrossRefPubMed Hurlbut BJ (1987) Auditory elicitation of the evoked potential in the rat. Physiol Behav 39:483–487CrossRefPubMed
go back to reference Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24:3313–3324CrossRefPubMed Ito M, Komatsu H (2004) Representation of angles embedded within contour stimuli in area V2 of macaque monkeys. J Neurosci 24:3313–3324CrossRefPubMed
go back to reference Kemp A, Manahan-Vaughan D (2012) Passive spatial perception facilitates the expression of persistent hippocampal long-term depression. Cereb Cortex 22:1614–1621CrossRefPubMed Kemp A, Manahan-Vaughan D (2012) Passive spatial perception facilitates the expression of persistent hippocampal long-term depression. Cereb Cortex 22:1614–1621CrossRefPubMed
go back to reference Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259CrossRefPubMed Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259CrossRefPubMed
go back to reference Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28CrossRefPubMed Kybic J, Clerc M, Abboud T, Faugeras O, Keriven R, Papadopoulo T (2005) A common formalism for the integral formulations of the forward EEG problem. IEEE Trans Med Imaging 24:12–28CrossRefPubMed
go back to reference Meeren HKM, Van Cappellen van Walsum AM, Van Luijtelaar ELJM, Coenen AML (2001) Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res 898:321–331CrossRefPubMed Meeren HKM, Van Cappellen van Walsum AM, Van Luijtelaar ELJM, Coenen AML (2001) Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res 898:321–331CrossRefPubMed
go back to reference Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends Neurosci 6:414–417CrossRef
go back to reference Nguyen DP, Lin SC (2014) A frontal cortex event-related potential driven by the basal forebrain. Elife 2014:1–17 Nguyen DP, Lin SC (2014) A frontal cortex event-related potential driven by the basal forebrain. Elife 2014:1–17
go back to reference Ohki K, Chung S, Ch YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro- architecture in visual cortex. Nature 433:597–603CrossRefPubMed Ohki K, Chung S, Ch YH, Kara P, Reid RC (2005) Functional imaging with cellular resolution reveals precise micro- architecture in visual cortex. Nature 433:597–603CrossRefPubMed
go back to reference Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9CrossRef Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:1–9CrossRef
go back to reference Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342CrossRefPubMed Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47:329–342CrossRefPubMed
go back to reference Quian Quiroga R, Van Luijtelaar ELJM (2002) Habituation and sensitization in rat auditory evoked potentials: a single-trial analysis with wavelet denoising. Int J Psychophysiol 43:141–153CrossRefPubMed Quian Quiroga R, Van Luijtelaar ELJM (2002) Habituation and sensitization in rat auditory evoked potentials: a single-trial analysis with wavelet denoising. Int J Psychophysiol 43:141–153CrossRefPubMed
go back to reference Rüther NN, Clayton E, Klepp A, Bellebaum C (2014a) Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Behav Brain Res 261:328–335CrossRefPubMed Rüther NN, Clayton E, Klepp A, Bellebaum C (2014a) Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices. Behav Brain Res 261:328–335CrossRefPubMed
go back to reference Rüther NN, Tettamanti M, Cappa SF, Bellebaum C (2014b) Observed manipulation enhances left fronto-parietal activations in the processing of unfamiliar tools. PLoS One 9:e99401CrossRefPubMedPubMedCentral Rüther NN, Tettamanti M, Cappa SF, Bellebaum C (2014b) Observed manipulation enhances left fronto-parietal activations in the processing of unfamiliar tools. PLoS One 9:e99401CrossRefPubMedPubMedCentral
go back to reference Sambeth A, Maes JHR (2006) A comparison of event-related potentials of humans and rats elicited by a serial feature-positive discrimination task. Learn Motiv 37:269–288CrossRef Sambeth A, Maes JHR (2006) A comparison of event-related potentials of humans and rats elicited by a serial feature-positive discrimination task. Learn Motiv 37:269–288CrossRef
go back to reference Sambeth A, Maes JHR, Van Luijtelaar G, Molenkamp IBS, Jongsma MLA, Van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40:60–68CrossRefPubMed Sambeth A, Maes JHR, Van Luijtelaar G, Molenkamp IBS, Jongsma MLA, Van Rijn CM (2003) Auditory event-related potentials in humans and rats: effects of task manipulation. Psychophysiology 40:60–68CrossRefPubMed
go back to reference Sambeth A, Maes JHR, Quiroga RQ, Coenen AML (2004) Effects of stimulus repetitions on the event-related potential of humans and rats. Int J Psychophysiol 53:197–205CrossRefPubMed Sambeth A, Maes JHR, Quiroga RQ, Coenen AML (2004) Effects of stimulus repetitions on the event-related potential of humans and rats. Int J Psychophysiol 53:197–205CrossRefPubMed
go back to reference Shinba T (1997) Event-related potentials of the rat during active and passive auditory oddball paradigms. Electroencephalogr Clin Neurophysiol 104:447–452CrossRefPubMed Shinba T (1997) Event-related potentials of the rat during active and passive auditory oddball paradigms. Electroencephalogr Clin Neurophysiol 104:447–452CrossRefPubMed
go back to reference Stefanics G, Kremláček J, Czigler I (2014) Visual mismatch negativity: a predictive coding view. Front Hum Neurosci 8:1–19CrossRef Stefanics G, Kremláček J, Czigler I (2014) Visual mismatch negativity: a predictive coding view. Front Hum Neurosci 8:1–19CrossRef
go back to reference Tafazoli S, Safaai H, De Franceschi G, Rosselli FB, Vanzella W, Riggi M, Buffolo F, Panzeri S, Zoccolan D (2017) Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex. Elife 6:1–39CrossRef Tafazoli S, Safaai H, De Franceschi G, Rosselli FB, Vanzella W, Riggi M, Buffolo F, Panzeri S, Zoccolan D (2017) Emergence of transformation-tolerant representations of visual objects in rat lateral extrastriate cortex. Elife 6:1–39CrossRef
go back to reference Ungerleider LG, Mishkin M (1982) Two Cortical Visual Streams. In: Ingle DJ,, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge, pp 549–586 Ungerleider LG, Mishkin M (1982) Two Cortical Visual Streams. In: Ingle DJ,, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge, pp 549–586
go back to reference Valdés-Hernández PA, Sumiyoshi A, Nonaka H, Haga R, Aubert-Vásquez E, Ogawa T, Iturria-Medina Y, Riera JJ, Kawashima R (2011) An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front Neuroinform 5:1–19CrossRef Valdés-Hernández PA, Sumiyoshi A, Nonaka H, Haga R, Aubert-Vásquez E, Ogawa T, Iturria-Medina Y, Riera JJ, Kawashima R (2011) An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front Neuroinform 5:1–19CrossRef
go back to reference Vermaercke B, Gerich FJ, Ytebrouck E, Arckens L, Op de Beeck HP, Van den Bergh G (2014) Functional specialization in rat occipital and temporal visual cortex. J Neurophysiol 112:1963–1983CrossRefPubMedPubMedCentral Vermaercke B, Gerich FJ, Ytebrouck E, Arckens L, Op de Beeck HP, Van den Bergh G (2014) Functional specialization in rat occipital and temporal visual cortex. J Neurophysiol 112:1963–1983CrossRefPubMedPubMedCentral
go back to reference Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203CrossRefPubMed Vogel EK, Luck SJ (2000) The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203CrossRefPubMed
go back to reference Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83:132–143CrossRefPubMed Winkler I, Czigler I (2012) Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. Int J Psychophysiol 83:132–143CrossRefPubMed
go back to reference Yamaguchi S, Globus H, Knight RT (1993) P3-like potential in rats. Electroencephalogr Clin Neurophysiol Evoked Potentials 88:151–154CrossRefPubMed Yamaguchi S, Globus H, Knight RT (1993) P3-like potential in rats. Electroencephalogr Clin Neurophysiol Evoked Potentials 88:151–154CrossRefPubMed
Metadata
Title
Event-related potentials evoked by passive visuospatial perception in rats and humans reveal common denominators in information processing
Authors
M. F. A. Hauser
V. Wiescholleck
J. Colitti-Klausnitzer
C. Bellebaum
Denise Manahan-Vaughan
Publication date
01-05-2019
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2019
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-019-01854-4

Other articles of this Issue 4/2019

Brain Structure and Function 4/2019 Go to the issue