Skip to main content
Top
Published in: Brain Structure and Function 4/2018

01-05-2018 | Original Article

Investigation of brain structure in the 1-month infant

Authors: Douglas C. Dean III, E. M. Planalp, W. Wooten, C. K. Schmidt, S. R. Kecskemeti, C. Frye, N. L. Schmidt, H. H. Goldsmith, A. L. Alexander, R. J. Davidson

Published in: Brain Structure and Function | Issue 4/2018

Login to get access

Abstract

The developing brain undergoes systematic changes that occur at successive stages of maturation. Deviations from the typical neurodevelopmental trajectory are hypothesized to underlie many early childhood disorders; thus, characterizing the earliest patterns of normative brain development is essential. Recent neuroimaging research provides insight into brain structure during late childhood and adolescence; however, few studies have examined the infant brain, particularly in infants under 3 months of age. Using high-resolution structural MRI, we measured subcortical gray and white matter brain volumes in a cohort (N = 143) of 1-month infants and examined characteristics of these volumetric measures throughout this early period of neurodevelopment. We show that brain volumes undergo age-related changes during the first month of life, with the corresponding patterns of regional asymmetry and sexual dimorphism. Specifically, males have larger total brain volume and volumes differ by sex in regionally specific brain regions, after correcting for total brain volume. Consistent with findings from studies of later childhood and adolescence, subcortical regions appear more rightward asymmetric. Neither sex differences nor regional asymmetries changed with gestation-corrected age. Our results complement a growing body of work investigating the earliest neurobiological changes associated with development and suggest that asymmetry and sexual dimorphism are present at birth.
Appendix
Available only for authorised users
Literature
go back to reference Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 18:880–894CrossRefPubMed Allen JS, Damasio H, Grabowski TJ et al (2003) Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage 18:880–894CrossRefPubMed
go back to reference Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18CrossRefPubMed Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18CrossRefPubMed
go back to reference Avants BB, Tustison NJ, Song G et al (2011a) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed Avants BB, Tustison NJ, Song G et al (2011a) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044CrossRefPubMed
go back to reference Avants BB, Tustison NJ, Wu J et al (2011b) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400CrossRefPubMedPubMedCentral Avants BB, Tustison NJ, Wu J et al (2011b) An open source multivariate framework for n-tissue segmentation with evaluation on public data. Neuroinformatics 9:381–400CrossRefPubMedPubMedCentral
go back to reference Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180CrossRefPubMed Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 T. Radiology 166:173–180CrossRefPubMed
go back to reference Bartzokis G (2004) Quadratic trajectories of brain myelin content: unifying construct for neuropsychiatric disorders. Neurobiol Aging 25:49–62CrossRef Bartzokis G (2004) Quadratic trajectories of brain myelin content: unifying construct for neuropsychiatric disorders. Neurobiol Aging 25:49–62CrossRef
go back to reference Belmonte MK, Allen G, Beckel-Mitchener A et al (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231CrossRefPubMed Belmonte MK, Allen G, Beckel-Mitchener A et al (2004) Autism and abnormal development of brain connectivity. J Neurosci 24:9228–9231CrossRefPubMed
go back to reference Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301CrossRefPubMed Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301CrossRefPubMed
go back to reference Cabezas M, Oliver A, Lladó X et al (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Meth Prog Bio 104:e158–e177CrossRef Cabezas M, Oliver A, Lladó X et al (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Meth Prog Bio 104:e158–e177CrossRef
go back to reference Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110CrossRefPubMed Casey BJ, Tottenham N, Liston C, Durston S (2005) Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9:104–110CrossRefPubMed
go back to reference Caviness VS Jr, Kennedy DN, Richelme C et al (1996) The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:726–736CrossRefPubMed Caviness VS Jr, Kennedy DN, Richelme C et al (1996) The human brain age 7–11 years: a volumetric analysis based on magnetic resonance images. Cereb Cortex 6:726–736CrossRefPubMed
go back to reference Chang YS, Owen JP, Pojman NJ et al (2015) White matter changes of neurite density and fiber orientation dispersion during human brain maturation. PLoS One 10:e0123656CrossRefPubMedPubMedCentral Chang YS, Owen JP, Pojman NJ et al (2015) White matter changes of neurite density and fiber orientation dispersion during human brain maturation. PLoS One 10:e0123656CrossRefPubMedPubMedCentral
go back to reference Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23:153–170CrossRefPubMed Courchesne E, Pierce K (2005) Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity. Int J Dev Neurosci 23:153–170CrossRefPubMed
go back to reference Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology:672–682 Courchesne E, Chisum HJ, Townsend J et al (2000) Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology:672–682
go back to reference Croteau-Chonka EC, Dean DC, Remer J et al (2016) Examining the relationships between cortical maturation and white matter myelination throughout early childhood. Neuroimage 125:413–421CrossRefPubMed Croteau-Chonka EC, Dean DC, Remer J et al (2016) Examining the relationships between cortical maturation and white matter myelination throughout early childhood. Neuroimage 125:413–421CrossRefPubMed
go back to reference Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80CrossRefPubMed Davidson RJ (2002) Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry 51:68–80CrossRefPubMed
go back to reference Davidson RJ (2008) Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn Emot 7:115–138CrossRef Davidson RJ (2008) Cerebral asymmetry and emotion: conceptual and methodological conundrums. Cogn Emot 7:115–138CrossRef
go back to reference Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44CrossRefPubMed Davison AN, Dobbing J (1966) Myelination as a vulnerable period in brain development. Br Med Bull 22:40–44CrossRefPubMed
go back to reference Dean DC III, Dirks H, O’Muircheartaigh J et al (2014a) Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr Radiol 44:64–72CrossRefPubMed Dean DC III, Dirks H, O’Muircheartaigh J et al (2014a) Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr Radiol 44:64–72CrossRefPubMed
go back to reference Dean DC III, O’Muircheartaigh J, Dirks H et al (2014b) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752CrossRefPubMedPubMedCentral Dean DC III, O’Muircheartaigh J, Dirks H et al (2014b) Modeling healthy male white matter and myelin development: 3 through 60 months of age. Neuroimage 84:742–752CrossRefPubMedPubMedCentral
go back to reference Dean DC III, O’Muircheartaigh J, Dirks H et al (2014c) Characterizing longitudinal white matter development during early childhood. Brain Struct Funct:1921–1931 Dean DC III, O’Muircheartaigh J, Dirks H et al (2014c) Characterizing longitudinal white matter development during early childhood. Brain Struct Funct:1921–1931
go back to reference Dean DC III, O’Muircheartaigh J, Dirks H et al (2016) Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage 132:225–237CrossRefPubMedPubMedCentral Dean DC III, O’Muircheartaigh J, Dirks H et al (2016) Mapping an index of the myelin g-ratio in infants using magnetic resonance imaging. Neuroimage 132:225–237CrossRefPubMedPubMedCentral
go back to reference Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373CrossRefPubMed Dehaene-Lambertz G, Hertz-Pannier L, Dubois J (2006) Nature and nurture in language acquisition: anatomical and functional brain-imaging studies in infants. Trends Neurosci 29:367–373CrossRefPubMed
go back to reference Deoni SCL, Dean DC, O’Muircheartaigh J et al (2012) Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage 63:1038–1053CrossRefPubMedPubMedCentral Deoni SCL, Dean DC, O’Muircheartaigh J et al (2012) Investigating white matter development in infancy and early childhood using myelin water faction and relaxation time mapping. Neuroimage 63:1038–1053CrossRefPubMedPubMedCentral
go back to reference DiCicco-Bloom E, Lord C, Zwaigenbaum L et al (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26:6897–6906CrossRefPubMed DiCicco-Bloom E, Lord C, Zwaigenbaum L et al (2006) The developmental neurobiology of autism spectrum disorder. J Neurosci 26:6897–6906CrossRefPubMed
go back to reference Dobbing J (1990) Vulnerable periods in developing brain. In: Commentary. Springer, London, pp 1–17 Dobbing J (1990) Vulnerable periods in developing brain. In: Commentary. Springer, London, pp 1–17
go back to reference Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132CrossRefPubMed Dubois J, Hertz-Pannier L, Dehaene-Lambertz G et al (2006) Assessment of the early organization and maturation of infants’ cerebral white matter fiber bundles: a feasibility study using quantitative diffusion tensor imaging and tractography. Neuroimage 30:1121–1132CrossRefPubMed
go back to reference Dubois J, Hertz-Pannier L, Cachia A et al (2009) Structural asymmetries in the infant language and sensor–motor networks. Cereb Cortex 19:414–423CrossRefPubMed Dubois J, Hertz-Pannier L, Cachia A et al (2009) Structural asymmetries in the infant language and sensor–motor networks. Cereb Cortex 19:414–423CrossRefPubMed
go back to reference Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71CrossRefPubMed Dubois J, Dehaene-Lambertz G, Kulikova S et al (2014) The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71CrossRefPubMed
go back to reference Durston S, Hulshoff Pol HE, Casey BJ et al (2001) Anatomical MRI of the developing human brain: what have we learned? J Am Acad Child Adolesc Psychiatry 40:1012–1020CrossRefPubMed Durston S, Hulshoff Pol HE, Casey BJ et al (2001) Anatomical MRI of the developing human brain: what have we learned? J Am Acad Child Adolesc Psychiatry 40:1012–1020CrossRefPubMed
go back to reference Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 8:13644 Elston GN, Fujita I (2014) Pyramidal cell development: postnatal spinogenesis, dendritic growth, axon growth, and electrophysiology. Front Neuroanat 8:13644
go back to reference Evans AC, Brain Development Cooperative Group (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202CrossRefPubMed Evans AC, Brain Development Cooperative Group (2006) The NIH MRI study of normal brain development. Neuroimage 30:184–202CrossRefPubMed
go back to reference Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767CrossRefPubMed Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767CrossRefPubMed
go back to reference Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–559CrossRefPubMed Giedd JN, Snell JW, Lange N et al (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–559CrossRefPubMed
go back to reference Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863CrossRefPubMed Giedd JN, Blumenthal J, Jeffries NO et al (1999) Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2:861–863CrossRefPubMed
go back to reference Gilmore JH, Lin W, Prastawa MW et al (2007) Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J Neurosci 27:1255–1260CrossRefPubMedPubMedCentral Gilmore JH, Lin W, Prastawa MW et al (2007) Regional gray matter growth, sexual dimorphism, and cerebral asymmetry in the neonatal brain. J Neurosci 27:1255–1260CrossRefPubMedPubMedCentral
go back to reference Gilmore JH, Shi F, Woolson SL et al (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22:2478–2485CrossRefPubMed Gilmore JH, Shi F, Woolson SL et al (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22:2478–2485CrossRefPubMed
go back to reference Glasser MF, Van Essen DC (2011) Mapping Human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616CrossRefPubMedPubMedCentral Glasser MF, Van Essen DC (2011) Mapping Human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616CrossRefPubMedPubMedCentral
go back to reference Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72:6–15CrossRefPubMed Gogtay N, Thompson PM (2010) Mapping gray matter development: implications for typical development and vulnerability to psychopathology. Brain Cogn 72:6–15CrossRefPubMed
go back to reference Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497CrossRefPubMed Goldstein JM, Seidman LJ, Horton NJ et al (2001) Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 11:490–497CrossRefPubMed
go back to reference Hill J, Dierker D, Neil J et al (2010) A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J Neurosci 30:2268–2276CrossRefPubMedPubMedCentral Hill J, Dierker D, Neil J et al (2010) A surface-based analysis of hemispheric asymmetries and folding of cerebral cortex in term-born human infants. J Neurosci 30:2268–2276CrossRefPubMedPubMedCentral
go back to reference Holland D, Chang L, Ernst TM et al (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266–1274CrossRefPubMedPubMedCentral Holland D, Chang L, Ernst TM et al (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266–1274CrossRefPubMedPubMedCentral
go back to reference Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38CrossRefPubMed Huang H, Zhang J, Wakana S et al (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38CrossRefPubMed
go back to reference Hugdahl K, Davidson RJ (2004) The asymmetrical brain. MIT Press, London Hugdahl K, Davidson RJ (2004) The asymmetrical brain. MIT Press, London
go back to reference Hüppi PS, Maier SE, Peled S et al (1998a) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590CrossRefPubMed Hüppi PS, Maier SE, Peled S et al (1998a) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590CrossRefPubMed
go back to reference Hüppi PS, Warfield S, Kikinis R et al (1998b) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235CrossRefPubMed Hüppi PS, Warfield S, Kikinis R et al (1998b) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235CrossRefPubMed
go back to reference Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178CrossRefPubMed Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178CrossRefPubMed
go back to reference Kolb B, Gibb R (2011) Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry 20:265–276PubMedPubMedCentral Kolb B, Gibb R (2011) Brain plasticity and behaviour in the developing brain. J Can Acad Child Adolesc Psychiatry 20:265–276PubMedPubMedCentral
go back to reference Koolschijn PCMP., Crone EA (2013) Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 5:106–118CrossRefPubMed Koolschijn PCMP., Crone EA (2013) Sex differences and structural brain maturation from childhood to early adulthood. Dev Cogn Neurosci 5:106–118CrossRefPubMed
go back to reference Kulikova S, Hertz-Pannier L, Dehaene-Lambertz G et al (2014) Multi-parametric evaluation of the white matter maturation. Brain Struct Funct 1–16 Kulikova S, Hertz-Pannier L, Dehaene-Lambertz G et al (2014) Multi-parametric evaluation of the white matter maturation. Brain Struct Funct 1–16
go back to reference Kunz N, Zhang H, Vasung L et al (2014) Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 96:288–299CrossRefPubMed Kunz N, Zhang H, Vasung L et al (2014) Assessing white matter microstructure of the newborn with multi-shell diffusion MRI and biophysical compartment models. Neuroimage 96:288–299CrossRefPubMed
go back to reference Lapate RC, Rokers B, Tromp DPM et al (2016) Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala-prefrontal connectivity. Sci Rep 6:25826CrossRefPubMedPubMedCentral Lapate RC, Rokers B, Tromp DPM et al (2016) Awareness of emotional stimuli determines the behavioral consequences of amygdala activation and amygdala-prefrontal connectivity. Sci Rep 6:25826CrossRefPubMedPubMedCentral
go back to reference Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31:10937–10947CrossRefPubMed Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31:10937–10947CrossRefPubMed
go back to reference Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055CrossRefPubMed Lebel C, Walker L, Leemans A et al (2008) Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 40:1044–1055CrossRefPubMed
go back to reference Lebel C, Gee M, Camicioli R et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–352CrossRefPubMed Lebel C, Gee M, Camicioli R et al (2012) Diffusion tensor imaging of white matter tract evolution over the lifespan. Neuroimage 60:340–352CrossRefPubMed
go back to reference Lenroot RK, Gogtay N, Greenstein DK et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073CrossRefPubMedPubMedCentral Lenroot RK, Gogtay N, Greenstein DK et al (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073CrossRefPubMedPubMedCentral
go back to reference Lupien SJ, Parent S, Evans AC et al (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108:14324–14329CrossRefPubMedPubMedCentral Lupien SJ, Parent S, Evans AC et al (2011) Larger amygdala but no change in hippocampal volume in 10-year-old children exposed to maternal depressive symptomatology since birth. Proc Natl Acad Sci USA 108:14324–14329CrossRefPubMedPubMedCentral
go back to reference Makki MI, Hagmann C (2017) Regional differences in interhemispheric structural fibers in healthy, term infants. J Neurosci Res 95:876–884CrossRefPubMed Makki MI, Hagmann C (2017) Regional differences in interhemispheric structural fibers in healthy, term infants. J Neurosci Res 95:876–884CrossRefPubMed
go back to reference Makropoulos A, Gousias IS, Ledig C et al (2014) Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33:1818–1831CrossRefPubMed Makropoulos A, Gousias IS, Ledig C et al (2014) Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans Med Imaging 33:1818–1831CrossRefPubMed
go back to reference Morris JS, Öhman A, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470CrossRefPubMed Morris JS, Öhman A, Dolan RJ (1998) Conscious and unconscious emotional learning in the human amygdala. Nature 393:467–470CrossRefPubMed
go back to reference Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358CrossRefPubMed Mukherjee P, Miller JH, Shimony JS et al (2001) Normal brain maturation during childhood: developmental trends characterized with diffusion-tensor MR imaging. Radiology 221:349–358CrossRefPubMed
go back to reference Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456PubMed Mukherjee P, Miller JH, Shimony JS et al (2002) Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation. AJNR Am J Neuroradiol 23:1445–1456PubMed
go back to reference O’Muircheartaigh J, Dean DC III, Dirks H et al (2013) Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 33:16170–16177CrossRefPubMedPubMedCentral O’Muircheartaigh J, Dean DC III, Dirks H et al (2013) Interactions between white matter asymmetry and language during neurodevelopment. J Neurosci 33:16170–16177CrossRefPubMedPubMedCentral
go back to reference Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage 56:8–20CrossRefPubMedPubMedCentral Oishi K, Mori S, Donohue PK et al (2011) Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. Neuroimage 56:8–20CrossRefPubMedPubMedCentral
go back to reference Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266CrossRefPubMed Paus T, Collins DL, Evans AC et al (2001) Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54:255–266CrossRefPubMed
go back to reference Perrin JS, Leonard G, Perron M et al (2009) Sex differences in the growth of white matter during adolescence. Neuroimage 45:1055–1066CrossRefPubMed Perrin JS, Leonard G, Perron M et al (2009) Sex differences in the growth of white matter during adolescence. Neuroimage 45:1055–1066CrossRefPubMed
go back to reference Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887CrossRefPubMed Pfefferbaum A, Mathalon DH, Sullivan EV et al (1994) A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch Neurol 51:874–887CrossRefPubMed
go back to reference R Development Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna R Development Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
go back to reference Reiss AL, Abrams MT, Singer HS et al (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119(Pt 5):1763–1774CrossRefPubMed Reiss AL, Abrams MT, Singer HS et al (1996) Brain development, gender and IQ in children. A volumetric imaging study. Brain 119(Pt 5):1763–1774CrossRefPubMed
go back to reference Shi F, Yap P-T, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. 6:e18746–e18711 Shi F, Yap P-T, Wu G et al (2011) Infant brain atlases from neonates to 1- and 2-year-olds. 6:e18746–e18711
go back to reference Simmonds DJ, Hallquist MN, Asato M, Luna B (2014) Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–368CrossRefPubMed Simmonds DJ, Hallquist MN, Asato M, Luna B (2014) Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–368CrossRefPubMed
go back to reference Wilke M, Krägeloh-Mann I, Holland SK (2007) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307CrossRefPubMed Wilke M, Krägeloh-Mann I, Holland SK (2007) Global and local development of gray and white matter volume in normal children and adolescents. Exp Brain Res 178:296–307CrossRefPubMed
go back to reference Yakovlev P, Lecours IR (1967) Regional development of the brain in early life. Minkowski A Yakovlev P, Lecours IR (1967) Regional development of the brain in early life. Minkowski A
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Med Imaging IEEE Trans 20:45–57CrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. Med Imaging IEEE Trans 20:45–57CrossRef
Metadata
Title
Investigation of brain structure in the 1-month infant
Authors
Douglas C. Dean III
E. M. Planalp
W. Wooten
C. K. Schmidt
S. R. Kecskemeti
C. Frye
N. L. Schmidt
H. H. Goldsmith
A. L. Alexander
R. J. Davidson
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1600-2

Other articles of this Issue 4/2018

Brain Structure and Function 4/2018 Go to the issue