Skip to main content
Top
Published in: Brain Structure and Function 4/2018

01-05-2018 | Original Article

Organization of auditory areas in the superior temporal gyrus of marmoset monkeys revealed by real-time optical imaging

Authors: Masataka Nishimura, Makoto Takemoto, Wen-Jie Song

Published in: Brain Structure and Function | Issue 4/2018

Login to get access

Abstract

The prevailing model of the primate auditory cortex proposes a core–belt–parabelt structure. The model proposes three auditory areas in the lateral belt region; however, it may contain more, as this region has been mapped only at a limited spatial resolution. To explore this possibility, we examined the auditory areas in the lateral belt region of the marmoset using a high-resolution optical imaging technique. Based on responses to pure tones, we identified multiple areas in the superior temporal gyrus. The three areas in the core region, the primary area (A1), the rostral area (R), and the rostrotemporal area, were readily identified from their frequency gradients and positions immediately ventral to the lateral sulcus. Three belt areas were identified with frequency gradients and relative positions to A1 and R that were in agreement with previous studies: the caudolateral area, the middle lateral area, and the anterolateral area (AL). Situated between R and AL, however, we identified two additional areas. The first was located caudoventral to R with a frequency gradient in the ventrocaudal direction, which we named the medial anterolateral (MAL) area. The second was a small area with no obvious tonotopy (NT), positioned between the MAL and AL areas. Both the MAL and NT areas responded to a wide range of frequencies (at least 2–24 kHz). Our results suggest that the belt region caudoventral to R is more complex than previously proposed, and we thus call for a refinement of the current primate auditory cortex model.
Appendix
Available only for authorised users
Literature
go back to reference Aitkin LM, Merzenich MM, Irvine DR, Clarey JC, Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252:175–185CrossRefPubMed Aitkin LM, Merzenich MM, Irvine DR, Clarey JC, Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J Comp Neurol 252:175–185CrossRefPubMed
go back to reference Bendor D, Wang X (2008) Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. J Neurophysiol 100(2):888–906CrossRefPubMedPubMedCentral Bendor D, Wang X (2008) Neural response properties of primary, rostral, and rostrotemporal core fields in the auditory cortex of marmoset monkeys. J Neurophysiol 100(2):888–906CrossRefPubMedPubMedCentral
go back to reference Bieser A, Müller-Preuss P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp Brain Res 108:273–284CrossRefPubMed Bieser A, Müller-Preuss P (1996) Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds. Exp Brain Res 108:273–284CrossRefPubMed
go back to reference Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36(6):1138–1158CrossRefPubMed Brugge JF, Merzenich MM (1973) Responses of neurons in auditory cortex of the macaque monkey to monaural and binaural stimulation. J Neurophysiol 36(6):1138–1158CrossRefPubMed
go back to reference Camalier CR, D’Angelo WR, Sterbing-D’Angelo SJ, de la Mothe LA, Hackett TA (2012) Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci USA 109(44):18168–18173CrossRefPubMedPubMedCentral Camalier CR, D’Angelo WR, Sterbing-D’Angelo SJ, de la Mothe LA, Hackett TA (2012) Neural latencies across auditory cortex of macaque support a dorsal stream supramodal timing advantage in primates. Proc Natl Acad Sci USA 109(44):18168–18173CrossRefPubMedPubMedCentral
go back to reference de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006a) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496(1):27–71CrossRefPubMed de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006a) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496(1):27–71CrossRefPubMed
go back to reference de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006b) Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496:72–96CrossRefPubMedPubMedCentral de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006b) Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496:72–96CrossRefPubMedPubMedCentral
go back to reference Feng L, Wang X (2017) Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proc Natl Acad Sci USA 114(5):E840–E848CrossRefPubMedPubMedCentral Feng L, Wang X (2017) Harmonic template neurons in primate auditory cortex underlying complex sound processing. Proc Natl Acad Sci USA 114(5):E840–E848CrossRefPubMedPubMedCentral
go back to reference Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568PubMed Grinvald A, Lieke EE, Frostig RD, Hildesheim R (1994) Cortical point-spread function and long-range lateral interactions revealed by real-time optical imaging of macaque monkey primary visual cortex. J Neurosci 14:2545–2568PubMed
go back to reference Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol 497(Pt 3):629–638CrossRefPubMedPubMedCentral Horikawa J, Hosokawa Y, Kubota M, Nasu M, Taniguchi I (1996) Optical imaging of spatiotemporal patterns of glutamatergic excitation and GABAergic inhibition in the guinea-pig auditory cortex in vivo. J Physiol 497(Pt 3):629–638CrossRefPubMedPubMedCentral
go back to reference Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339CrossRefPubMed Horikawa J, Hess A, Nasu M, Hosokawa Y, Scheich H, Taniguchi I (2001) Optical imaging of neural activity in multiple auditory cortical fields of guinea pigs. Neuroreport 12:3335–3339CrossRefPubMed
go back to reference Imig TJ, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J Comp Neurol 171:111–128CrossRefPubMed Imig TJ, Ruggero MA, Kitzes LM, Javel E, Brugge JF (1977) Organization of auditory cortex in the owl monkey (Aotus trivirgatus). J Comp Neurol 171:111–128CrossRefPubMed
go back to reference Inagaki S, Katura T, Kawaguchi H, Song W-J (2003) Isolation of neural activity from respiratory and heartbeat noises for in vivo optical recordings using independent component analysis. Neurosci Lett 352:9–12CrossRefPubMed Inagaki S, Katura T, Kawaguchi H, Song W-J (2003) Isolation of neural activity from respiratory and heartbeat noises for in vivo optical recordings using independent component analysis. Neurosci Lett 352:9–12CrossRefPubMed
go back to reference Kajikawa Y, de la Mothe LA, Blumell S, Hackett TA (2005) A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broad band noise. J Neurophysiol 93:22–34CrossRefPubMed Kajikawa Y, de la Mothe LA, Blumell S, Hackett TA (2005) A comparison of neuron response properties in areas A1 and CM of the marmoset monkey auditory cortex: tones and broad band noise. J Neurophysiol 93:22–34CrossRefPubMed
go back to reference Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316CrossRefPubMed Kosaki H, Hashikawa T, He J, Jones EG (1997) Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J Comp Neurol 386:304–316CrossRefPubMed
go back to reference Lu T, Wang X (2004) Information content of auditory cortical responses to time-varying acoustic stimuli. J Neurophysiol 91:301–313CrossRefPubMed Lu T, Wang X (2004) Information content of auditory cortical responses to time-varying acoustic stimuli. J Neurophysiol 91:301–313CrossRefPubMed
go back to reference Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138CrossRefPubMed Lu T, Liang L, Wang X (2001) Temporal and rate representations of time-varying signals in the auditory cortex of awake primates. Nat Neurosci 4:1131–1138CrossRefPubMed
go back to reference Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285(4):487–513 Luethke LE, Krubitzer LA, Kaas JH (1989) Connections of primary auditory cortex in the New World monkey, Saguinus. J Comp Neurol 285(4):487–513
go back to reference Maeda S, Inagaki S, Kawaguchi H, Song W-J (2001) Separation of signal and noise from in vivo optical recording in guinea pig using independent component analysis. Neurosci Lett 302:137–140CrossRefPubMed Maeda S, Inagaki S, Kawaguchi H, Song W-J (2001) Separation of signal and noise from in vivo optical recording in guinea pig using independent component analysis. Neurosci Lett 302:137–140CrossRefPubMed
go back to reference Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275–296CrossRefPubMed Merzenich MM, Brugge JF (1973) Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275–296CrossRefPubMed
go back to reference Miller JM, Sutton D, Pfingst B, Ryan A, Beaton R, Gourevitch G (1972) Single cell activity in the auditory cortex of Rhesus monkeys: behavioral dependency. Science 177(4047):449–451CrossRefPubMed Miller JM, Sutton D, Pfingst B, Ryan A, Beaton R, Gourevitch G (1972) Single cell activity in the auditory cortex of Rhesus monkeys: behavioral dependency. Science 177(4047):449–451CrossRefPubMed
go back to reference Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63CrossRefPubMed Morel A, Kaas JH (1992) Subdivisions and connections of auditory cortex in owl monkeys. J Comp Neurol 318:27–63CrossRefPubMed
go back to reference Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459CrossRefPubMed Morel A, Garraghty PE, Kaas JH (1993) Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol 335:437–459CrossRefPubMed
go back to reference Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE, Merzenich MM (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J Neurophysiol 87:1723–1737CrossRefPubMed Nagarajan SS, Cheung SW, Bedenbaugh P, Beitel RE, Schreiner CE, Merzenich MM (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J Neurophysiol 87:1723–1737CrossRefPubMed
go back to reference Nieto-Diego J, Malmierca MS (2016) Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol 14(3):e1002397CrossRefPubMedPubMedCentral Nieto-Diego J, Malmierca MS (2016) Topographic distribution of stimulus-specific adaptation across auditory cortical fields in the anesthetized rat. PLoS Biol 14(3):e1002397CrossRefPubMedPubMedCentral
go back to reference Nishimura M, Song W-J (2014) Greenwood frequency-position relationship in the primary auditory cortex in guinea pigs. NeuroImage 89:181–191CrossRefPubMed Nishimura M, Song W-J (2014) Greenwood frequency-position relationship in the primary auditory cortex in guinea pigs. NeuroImage 89:181–191CrossRefPubMed
go back to reference Nishimura M, Shirasawa H, Kaizo HH, Song H W-J (2007) New field with tonotopic organization in guinea pig auditory cortex. J Neurophysiol 97:927–932CrossRefPubMed Nishimura M, Shirasawa H, Kaizo HH, Song H W-J (2007) New field with tonotopic organization in guinea pig auditory cortex. J Neurophysiol 97:927–932CrossRefPubMed
go back to reference Paxinos G, Watson C, Petrides M, Rosa M, Tokuno H (2012) The marmoset brain in stereotaxic coordinates, 1st edn. Academic Press, New York Paxinos G, Watson C, Petrides M, Rosa M, Tokuno H (2012) The marmoset brain in stereotaxic coordinates, 1st edn. Academic Press, New York
go back to reference Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK (2008) A voice region in the monkey brain. Nat Neurosci 11(3):367–374CrossRefPubMed Petkov CI, Kayser C, Steudel T, Whittingstall K, Augath M, Logothetis NK (2008) A voice region in the monkey brain. Nat Neurosci 11(3):367–374CrossRefPubMed
go back to reference Philibert B, Beitel RE, Nagarajan SS, Bonham BH, Schreiner CE, Cheung SW (2005) Functional organization and hemispheric comparison of primary auditory cortex in the common marmoset (Callithrix jacchus). J Comp Neurol 487:391–406CrossRefPubMed Philibert B, Beitel RE, Nagarajan SS, Bonham BH, Schreiner CE, Cheung SW (2005) Functional organization and hemispheric comparison of primary auditory cortex in the common marmoset (Callithrix jacchus). J Comp Neurol 487:391–406CrossRefPubMed
go back to reference Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589CrossRefPubMed Rauschecker JP, Tian B (2004) Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 91:2578–2589CrossRefPubMed
go back to reference Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114CrossRefPubMed Rauschecker JP, Tian B, Hauser M (1995) Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–114CrossRefPubMed
go back to reference Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103CrossRefPubMed Rauschecker JP, Tian B, Pons T, Mishkin M (1997) Serial and parallel processing in rhesus monkey auditory cortex. J Comp Neurol 382:89–103CrossRefPubMed
go back to reference Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol 415(4):460–481CrossRefPubMed Recanzone GH, Schreiner CE, Sutter ML, Beitel RE, Merzenich MM (1999) Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J Comp Neurol 415(4):460–481CrossRefPubMed
go back to reference Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331CrossRefPubMed Recanzone GH, Guard DC, Phan ML (2000) Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J Neurophysiol 83:2315–2331CrossRefPubMed
go back to reference Song W-J, Kawaguchi H, Totoki S, Inoue Y, Katura T, Maeda S, Inagaki S, Shirasawa H, Nishimura M (2006) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb Cortex 16:718–729CrossRefPubMed Song W-J, Kawaguchi H, Totoki S, Inoue Y, Katura T, Maeda S, Inagaki S, Shirasawa H, Nishimura M (2006) Cortical intrinsic circuits can support activity propagation through an isofrequency strip of the guinea pig primary auditory cortex. Cereb Cortex 16:718–729CrossRefPubMed
go back to reference Sweet RA, Dorph-Petersen KA, Lewis DA (2005) Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. J Comp Neurol 491:270–289CrossRefPubMed Sweet RA, Dorph-Petersen KA, Lewis DA (2005) Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. J Comp Neurol 491:270–289CrossRefPubMed
go back to reference Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013CrossRefPubMed Tian B, Rauschecker JP (2004) Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J Neurophysiol 92:2993–3013CrossRefPubMed
go back to reference Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293CrossRefPubMed Tian B, Reser D, Durham A, Kustov A, Rauschecker JP (2001) Functional specialization in rhesus monkey auditory cortex. Science 292:290–293CrossRefPubMed
go back to reference Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86:2616–2620CrossRefPubMed Wang X, Kadia SC (2001) Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J Neurophysiol 86:2616–2620CrossRefPubMed
go back to reference Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706CrossRefPubMed Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706CrossRefPubMed
Metadata
Title
Organization of auditory areas in the superior temporal gyrus of marmoset monkeys revealed by real-time optical imaging
Authors
Masataka Nishimura
Makoto Takemoto
Wen-Jie Song
Publication date
01-05-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1574-0

Other articles of this Issue 4/2018

Brain Structure and Function 4/2018 Go to the issue