Skip to main content
Top
Published in: Brain Structure and Function 3/2018

01-04-2018 | Original Article

Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice

Authors: Douglas G. Peters, Carson J. Purnell, Michael P. Haaf, Qing X. Yang, James R. Connor, Mark D. Meadowcroft

Published in: Brain Structure and Function | Issue 3/2018

Login to get access

Abstract

Impaired brain iron homeostatic mechanisms, independent of pathological hallmarks, are harmful to the brain because excess free iron can cause DNA, protein, and lipid damage via oxidative stress. The goal of this study was to evaluate the longitudinal effect of chronic iron overload and deficiency in the vertebrate brain. Ten-week-old C57BL6 male mice were randomly assigned to one of four unique dietary regiments for 1 year: iron-deficient, normal iron, and two different concentrations of lipophilic iron diet containing 3,5,5-trimethylhexanoyl ferrocene (TMHF). Longitudinal MRI parametrics were used to assess the location and extent of ferric iron distribution. Tissue collected at 12 months was used to directly measure iron-load, protein alterations, and histological metrics. While the iron-deficient diet did not alter brain iron stores, 0.11% TMHF and early exposure with 0.5% TMHF elevated brain iron by roughly 40 and 100%, respectively. R 2 rate increased more in the TMHF groups within iron rich brain regions. Increased brain iron concentration was linearly correlated with an increase in L-ferritin expression, and TMHF diet was found to increase L-ferritin within the olfactory bulb, neocortex, pallidum, thalamus, corpus callosum, CA3 regions of the hippocampus, and substantia nigra. Moreover, gliosis and oxidative stress were detected in the TMHF groups in the regions associated with iron-load. Spatial memory impairment was evident in the iron-loaded mice. This work illustrates that lipophilic iron elevates brain iron in a regionally specific fashion and positions dietary TMHF administration as a model for brain iron overloading.
Literature
go back to reference Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL (2014) H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 35:1511-e1–1511-e12CrossRef Ali-Rahmani F, Grigson PS, Lee S, Neely E, Connor JR, Schengrund CL (2014) H63D mutation in hemochromatosis alters cholesterol metabolism and induces memory impairment. Neurobiol Aging 35:1511-e1–1511-e12CrossRef
go back to reference Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK et al (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35:480–487CrossRefPubMed Bartzokis G, Sultzer D, Mintz J, Holt LE, Marx P, Phelan CK et al (1994) In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol Psychiatry 35:480–487CrossRefPubMed
go back to reference Bartzokis G, Beckson M, Hange DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15:29–35CrossRefPubMed Bartzokis G, Beckson M, Hange DB, Marx P, Foster JA, Marder SR (1997) MR evaluation of age-related increase of brain iron in young adult and older normal males. Magn Reson Imaging 15:29–35CrossRefPubMed
go back to reference Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG et al (2010) Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 31:1554–1562CrossRefPubMed Bartzokis G, Lu PH, Tingus K, Mendez MF, Richard A, Peters DG et al (2010) Lifespan trajectory of myelin integrity and maximum motor speed. Neurobiol Aging 31:1554–1562CrossRefPubMed
go back to reference Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872CrossRefPubMedPubMedCentral Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R et al (2014) Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 35:1862–1872CrossRefPubMedPubMedCentral
go back to reference Chastre A, Bélanger M, Beauchesne E, Nguyen BN, Desjardins P, Butterworth RF (2012) Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLoS One 7:1–9CrossRef Chastre A, Bélanger M, Beauchesne E, Nguyen BN, Desjardins P, Butterworth RF (2012) Inflammatory cascades driven by tumor necrosis factor-alpha play a major role in the progression of acute liver failure and its neurological complications. PLoS One 7:1–9CrossRef
go back to reference Ciavardelli D, Consalvo A, Caldaro V, Di Vacri ML, Nisi S, Frazzini V et al (2012) Characterisation of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP-MS. Metallomics 4:1321–1332CrossRefPubMed Ciavardelli D, Consalvo A, Caldaro V, Di Vacri ML, Nisi S, Frazzini V et al (2012) Characterisation of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP-MS. Metallomics 4:1321–1332CrossRefPubMed
go back to reference Connor JR, Ponnuru P, Wang X-S, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134:959–968CrossRefPubMedPubMedCentral Connor JR, Ponnuru P, Wang X-S, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134:959–968CrossRefPubMedPubMedCentral
go back to reference Cunnane SC, Crawford MA (2014) Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol 77:88–98CrossRefPubMed Cunnane SC, Crawford MA (2014) Energetic and nutritional constraints on infant brain development: implications for brain expansion during human evolution. J Hum Evol 77:88–98CrossRefPubMed
go back to reference Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550CrossRefPubMed Dardzinski BJ, Mosher TJ, Li S, Van Slyke MA, Smith MB (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550CrossRefPubMed
go back to reference Domínguez-Rodrigo M, Pickering TR, Diez-Martín F, Mabulla A, Musiba C, Trancho G et al (2012) Earliest porotic hyperostosis on a 1.5-million-year-old Hominin, Olduvai Gorge, Tanzania. PLoS One 7:1–7CrossRef Domínguez-Rodrigo M, Pickering TR, Diez-Martín F, Mabulla A, Musiba C, Trancho G et al (2012) Earliest porotic hyperostosis on a 1.5-million-year-old Hominin, Olduvai Gorge, Tanzania. PLoS One 7:1–7CrossRef
go back to reference Gomi S, Gotoh F, Ishihara N, Tanaka K, Ishikawa Y, Takashima S et al (1991) Effects of lesioning the substantia innominata on autoregulation of local cerebral blood flow in rats. J Cereb Blood Flow Metab 11:66–71CrossRefPubMed Gomi S, Gotoh F, Ishihara N, Tanaka K, Ishikawa Y, Takashima S et al (1991) Effects of lesioning the substantia innominata on autoregulation of local cerebral blood flow in rats. J Cereb Blood Flow Metab 11:66–71CrossRefPubMed
go back to reference Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T et al (2013) The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 37:2676–2688CrossRefPubMed Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T et al (2013) The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neurosci Biobehav Rev 37:2676–2688CrossRefPubMed
go back to reference Greminger AR, Lee DL, Shrager P, Mayer-Proschel M (2014) Gestational iron-deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J Nutr 144:1058–1066CrossRefPubMedPubMedCentral Greminger AR, Lee DL, Shrager P, Mayer-Proschel M (2014) Gestational iron-deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. J Nutr 144:1058–1066CrossRefPubMedPubMedCentral
go back to reference Hallgren B, Sourander PB (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed Hallgren B, Sourander PB (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3:41–51CrossRefPubMed
go back to reference Hoque R, Ledbetter C, Gonzalez-Toledo E, Misra V, Menon U, Kenner M et al (2007) The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination: an analytical study with case presentation [internet]. Int Rev Neurobiol 79:491–519. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/17531856 Hoque R, Ledbetter C, Gonzalez-Toledo E, Misra V, Menon U, Kenner M et al (2007) The role of quantitative neuroimaging indices in the differentiation of ischemia from demyelination: an analytical study with case presentation [internet]. Int Rev Neurobiol 79:491–519. [cited 2016 Oct 30]. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17531856
go back to reference House MJ, St. Pierre TG, Kowdley KV, Montine T, Connor J, Beard J et al (2007) Correlation of proton transverse relaxation rates (R 2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 57:172–180CrossRefPubMed House MJ, St. Pierre TG, Kowdley KV, Montine T, Connor J, Beard J et al (2007) Correlation of proton transverse relaxation rates (R 2) with iron concentrations in postmortem brain tissue from Alzheimer’s disease patients. Magn Reson Med 57:172–180CrossRefPubMed
go back to reference Kara F, Höfling C, Roßner S, Schliebs R, Van der Linden A, Groot HJM et al (2015) In vivo longitudinal monitoring of changes in the corpus callosum integrity during disease progression in a mouse model of Alzheimer’s disease [internet]. Curr Alzheimer Res 12(10):941–950. [cited 2016 Oct 26]. http://www.ncbi.nlm.nih.gov/pubmed/26502821 Kara F, Höfling C, Roßner S, Schliebs R, Van der Linden A, Groot HJM et al (2015) In vivo longitudinal monitoring of changes in the corpus callosum integrity during disease progression in a mouse model of Alzheimer’s disease [internet]. Curr Alzheimer Res 12(10):941–950. [cited 2016 Oct 26]. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​26502821
go back to reference Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28:907–913CrossRefPubMed Kaur D, Peng J, Chinta SJ, Rajagopalan S, Di Monte DA, Cherny RA et al (2007) Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol Aging 28:907–913CrossRefPubMed
go back to reference Lykkesfeldt J, Morgan E, Christen S, Skovgaard LT (2007) Oxidative stress and damage in liver, but not in brain, of fischer 344 rats subjected to dietary iron supplementation with lipid-soluble TMH-ferrocene. Mol Toxicol 21:145–155CrossRef Lykkesfeldt J, Morgan E, Christen S, Skovgaard LT (2007) Oxidative stress and damage in liver, but not in brain, of fischer 344 rats subjected to dietary iron supplementation with lipid-soluble TMH-ferrocene. Mol Toxicol 21:145–155CrossRef
go back to reference Malecki EA, Cable EE, Isom HC, Connor JR (2002) The lipophilic iron compound TMH-ferrocene [(3,5,5-trimethylhexanoyl)ferrocene] increases iron concentrations, neuronal L-ferritin, and heme oxygenase in brains of BALB/c mice. Biol Trace Elem Res 86:73–84CrossRefPubMed Malecki EA, Cable EE, Isom HC, Connor JR (2002) The lipophilic iron compound TMH-ferrocene [(3,5,5-trimethylhexanoyl)ferrocene] increases iron concentrations, neuronal L-ferritin, and heme oxygenase in brains of BALB/c mice. Biol Trace Elem Res 86:73–84CrossRefPubMed
go back to reference Matak P, Matak A, Moustafa S, Aryal DK, Benner EJ, Wetsel WC et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Nat Acad Sci USA 113(13):3428–3435CrossRefPubMedPubMedCentral Matak P, Matak A, Moustafa S, Aryal DK, Benner EJ, Wetsel WC et al (2016) Disrupted iron homeostasis causes dopaminergic neurodegeneration in mice. Proc Nat Acad Sci USA 113(13):3428–3435CrossRefPubMedPubMedCentral
go back to reference McNeill A, Gorman G, Khan A, Horvath R, Blamire AM, Chinnery PF (2012) Progressive brain iron accumulation in neuroferritinopathy measured by the thalamic T2* relaxation rate. Am J Neuroradiol 33:1810–1813CrossRefPubMedPubMedCentral McNeill A, Gorman G, Khan A, Horvath R, Blamire AM, Chinnery PF (2012) Progressive brain iron accumulation in neuroferritinopathy measured by the thalamic T2* relaxation rate. Am J Neuroradiol 33:1810–1813CrossRefPubMedPubMedCentral
go back to reference Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN (2001) Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11:763–775CrossRefPubMed Miyakawa T, Yared E, Pak JH, Huang FL, Huang KP, Crawley JN (2001) Neurogranin null mutant mice display performance deficits on spatial learning tasks with anxiety related components. Hippocampus 11:763–775CrossRefPubMed
go back to reference Novac A, Bota RG (2014) Transprocessing: a proposed neurobiological mechanism of psychotherapeutic processing. Ment Illn 6:20–35 Novac A, Bota RG (2014) Transprocessing: a proposed neurobiological mechanism of psychotherapeutic processing. Ment Illn 6:20–35
go back to reference Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2:541–553CrossRefPubMed Poon CS, Henkelman RM (1992) Practical T2 quantitation for clinical applications. J Magn Reson Imaging 2:541–553CrossRefPubMed
go back to reference Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17CrossRefPubMed Ramos P, Santos A, Pinto NR, Mendes R, Magalhaes T, Almeida A (2014) Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 28:13–17CrossRefPubMed
go back to reference Sasaki M, Ehara S, Tamakawa Y, Takahashi S, Tohgi H, Sakai A et al (1995) MR anatomy of the substantia innominata and findings in Alzheimer disease: a preliminary report. Am J Neuroradiol 16:2001–2009PubMed Sasaki M, Ehara S, Tamakawa Y, Takahashi S, Tohgi H, Sakai A et al (1995) MR anatomy of the substantia innominata and findings in Alzheimer disease: a preliminary report. Am J Neuroradiol 16:2001–2009PubMed
go back to reference Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, De Zwart JA et al (2013) Micro-compartment specific T2* relaxation in the brain. Neuroimage 77:268–278CrossRefPubMed Sati P, van Gelderen P, Silva AC, Reich DS, Merkle H, De Zwart JA et al (2013) Micro-compartment specific T2* relaxation in the brain. Neuroimage 77:268–278CrossRefPubMed
go back to reference Sawiak S, Wood N, Williams G, Morton A, Carpenter T (2009) Deformation-based morphometry in the R6/2 Huntington’s disease mouse brain [internet]. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, p 544. /MyPathway2009/0544 Sawiak S, Wood N, Williams G, Morton A, Carpenter T (2009) Deformation-based morphometry in the R6/2 Huntington’s disease mouse brain [internet]. In: Proceedings 17th scientific meeting, international society for magnetic resonance in medicine, p 544. /MyPathway2009/0544
go back to reference Stricker NH, Schweinsburg BC, Delano-Wood L, Wierenga CE, Bangen KJ, Haaland KY et al (2009) Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis [internet]. Neuroimage 45(1):10–16. [cited 2016 Oct 30]. http://www.ncbi.nlm.nih.gov/pubmed/19100839 Stricker NH, Schweinsburg BC, Delano-Wood L, Wierenga CE, Bangen KJ, Haaland KY et al (2009) Decreased white matter integrity in late-myelinating fiber pathways in Alzheimer’s disease supports retrogenesis [internet]. Neuroimage 45(1):10–16. [cited 2016 Oct 30]. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19100839
go back to reference Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2001) Age-related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res 80:145–158CrossRefPubMed Takahashi S, Takahashi I, Sato H, Kubota Y, Yoshida S, Muramatsu Y (2001) Age-related changes in the concentrations of major and trace elements in the brain of rats and mice. Biol Trace Elem Res 80:145–158CrossRefPubMed
go back to reference Teipel SJ, Flatz WH, Heinsen H, Bokde ALW, Schoenberg SO, Stöckel S et al (2005) Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128:2626–2644CrossRefPubMed Teipel SJ, Flatz WH, Heinsen H, Bokde ALW, Schoenberg SO, Stöckel S et al (2005) Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128:2626–2644CrossRefPubMed
go back to reference Walter T, De Andraca I, Chadud P, Walter Perales CG et al (1989) Iron-deficiency anemia adverse effects on infant psychomotor development.pdf. Pediatrics 84:7–17PubMed Walter T, De Andraca I, Chadud P, Walter Perales CG et al (1989) Iron-deficiency anemia adverse effects on infant psychomotor development.pdf. Pediatrics 84:7–17PubMed
Metadata
Title
Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice
Authors
Douglas G. Peters
Carson J. Purnell
Michael P. Haaf
Qing X. Yang
James R. Connor
Mark D. Meadowcroft
Publication date
01-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2018
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1565-1

Other articles of this Issue 3/2018

Brain Structure and Function 3/2018 Go to the issue