Skip to main content
Top
Published in: Brain Structure and Function 9/2017

01-12-2017 | Short Communication

Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone

Authors: Kei-ichi Katayama, Kanehiro Hayashi, Seika Inoue, Kazushige Sakaguchi, Kazunori Nakajima

Published in: Brain Structure and Function | Issue 9/2017

Login to get access

Abstract

Mutations of PAFAH1B1 cause classical lissencephaly in humans. In addition, duplications and triplications of PAFAH1B1 are found in individuals with intellectual disability and other neurological disorders suggesting that proper brain development is highly sensitive to the PAFAH1B1 dosage. To examine the effect of PAFAH1B1 over-dosage in neural development, especially in migration of neurons and layer formation during cerebral cortical development, we overexpressed Pafah1b1 in migrating neurons in the mouse embryonic cortex using in utero electroporation. Enhanced expression of Pafah1b1 in radially-migrating neurons resulted in their over-migration into the marginal zone. Neurons that invaded the marginal zone were oriented abnormally. Layer distribution of Pafaha1b1-overexpressing neurons shifted more superficially than control neurons. Some of the Pafaha1b1-overexpressing future layer 4 neurons changed their positions to layers 2/3. Furthermore, they also changed their layer marker expression from layer 4 to layers 2/3. These results suggest that overexpression of Pafah1b1 affects the migration of neurons and disrupts layer formation in the developing cerebral cortex, and further support the idea that appropriate dosage of Pafah1b1 is crucial for the proper development of the brain.
Appendix
Available only for authorised users
Literature
go back to reference Bar I et al (1995) A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics 26(3):543–549CrossRefPubMed Bar I et al (1995) A YAC contig containing the reeler locus with preliminary characterization of candidate gene fragments. Genomics 26(3):543–549CrossRefPubMed
go back to reference Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887CrossRefPubMed Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB (2005) A developmental and genetic classification for malformations of cortical development. Neurology 65(12):1873–1887CrossRefPubMed
go back to reference Curry CJ et al (2013) The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 161A(8):1833–1852CrossRefPubMedPubMedCentral Curry CJ et al (2013) The duplication 17p13.3 phenotype: analysis of 21 families delineates developmental, behavioral and brain abnormalities, and rare variant phenotypes. Am J Med Genet A 161A(8):1833–1852CrossRefPubMedPubMedCentral
go back to reference D’Arcangelo G et al (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723CrossRefPubMed D’Arcangelo G et al (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374(6524):719–723CrossRefPubMed
go back to reference Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497CrossRefPubMedPubMedCentral Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U (2011) Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron 69(3):482–497CrossRefPubMedPubMedCentral
go back to reference Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074CrossRefPubMed Fukuchi-Shimogori T, Grove EA (2001) Neocortex patterning by the secreted signaling molecule FGF8. Science 294(5544):1071–1074CrossRefPubMed
go back to reference Hevner RF et al (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29(2):353–366CrossRefPubMed Hevner RF et al (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29(2):353–366CrossRefPubMed
go back to reference Hirotsune S et al (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339CrossRefPubMed Hirotsune S et al (1998) Graded reduction of Pafah1b1 (Lis1) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 19(4):333–339CrossRefPubMed
go back to reference Horton AC et al (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48(5):757–771CrossRefPubMed Horton AC et al (2005) Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48(5):757–771CrossRefPubMed
go back to reference Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–737CrossRefPubMed Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389(6652):733–737CrossRefPubMed
go back to reference Kojima T, Nakajima K, Mikoshiba K (2000) The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75(1):121–127CrossRefPubMed Kojima T, Nakajima K, Mikoshiba K (2000) The disabled 1 gene is disrupted by a replacement with L1 fragment in yotari mice. Brain Res Mol Brain Res 75(1):121–127CrossRefPubMed
go back to reference Kubo K et al (2010) Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent “inside-out” alignment in the developing neocortex. J Neurosci 30(33):10953–10966CrossRefPubMed Kubo K et al (2010) Ectopic Reelin induces neuronal aggregation with a normal birthdate-dependent “inside-out” alignment in the developing neocortex. J Neurosci 30(33):10953–10966CrossRefPubMed
go back to reference Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ (2012) LIS1 duplication: expanding the phenotype. J Child Neurol 27(6):791–795CrossRefPubMed Lockrow JP, Holden KR, Dwivedi A, Matheus MG, Lyons MJ (2012) LIS1 duplication: expanding the phenotype. J Child Neurol 27(6):791–795CrossRefPubMed
go back to reference Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4(2):143–150CrossRefPubMed Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL (2001) Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4(2):143–150CrossRefPubMed
go back to reference Nakagawa Y, O’Leary DD (2003) Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. Dev Neurosci 25(2–4):234–244CrossRefPubMed Nakagawa Y, O’Leary DD (2003) Dynamic patterned expression of orphan nuclear receptor genes RORalpha and RORbeta in developing mouse forebrain. Dev Neurosci 25(2–4):234–244CrossRefPubMed
go back to reference Nakagawa Y, Johnson JE, O’Leary DD (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J Neurosci 19(24):10877–10885PubMed Nakagawa Y, Johnson JE, O’Leary DD (1999) Graded and areal expression patterns of regulatory genes and cadherins in embryonic neocortex independent of thalamocortical input. J Neurosci 19(24):10877–10885PubMed
go back to reference Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199CrossRefPubMed Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199CrossRefPubMed
go back to reference Ogawa M et al (1995) The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14(5):899–912CrossRefPubMed Ogawa M et al (1995) The reeler gene-associated antigen on Cajal–Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14(5):899–912CrossRefPubMed
go back to reference Oishi K, Aramaki M, Nakajima K (2016a) Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc Natl Acad Sci USA 113(12):3371–3376CrossRefPubMedPubMedCentral Oishi K, Aramaki M, Nakajima K (2016a) Mutually repressive interaction between Brn1/2 and Rorb contributes to the establishment of neocortical layer 2/3 and layer 4. Proc Natl Acad Sci USA 113(12):3371–3376CrossRefPubMedPubMedCentral
go back to reference Pinto Lord MC, Caviness VS Jr (1979) Determinants of cell shape and orientation: a comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187(1):49–69CrossRefPubMed Pinto Lord MC, Caviness VS Jr (1979) Determinants of cell shape and orientation: a comparative Golgi analysis of cell-axon interrelationships in the developing neocortex of normal and reeler mice. J Comp Neurol 187(1):49–69CrossRefPubMed
go back to reference Reiner O, Sapir T (2013) LIS1 functions in normal development and disease. Curr Opin Neurobiol 23(6):951–956CrossRefPubMed Reiner O, Sapir T (2013) LIS1 functions in normal development and disease. Curr Opin Neurobiol 23(6):951–956CrossRefPubMed
go back to reference Reiner O et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721CrossRefPubMed Reiner O et al (1993) Isolation of a Miller–Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 364(6439):717–721CrossRefPubMed
go back to reference Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246CrossRefPubMed Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240(1):237–246CrossRefPubMed
go back to reference Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K (2011) The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31(25):9426–9439CrossRefPubMed Sekine K, Honda T, Kawauchi T, Kubo K, Nakajima K (2011) The outermost region of the developing cortical plate is crucial for both the switch of the radial migration mode and the Dab1-dependent “inside-out” lamination in the neocortex. J Neurosci 31(25):9426–9439CrossRefPubMed
go back to reference Sekine K et al (2012) Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron 76(2):353–369CrossRefPubMedPubMedCentral Sekine K et al (2012) Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin alpha5beta1. Neuron 76(2):353–369CrossRefPubMedPubMedCentral
go back to reference Sekine K, Tabata H, Nakajima K (2013) Cell polarity and initiation of migration. Compr Dev Neurosci Cell Migr Form Neuronal Connect Chapter 12:231–244 Sekine K, Tabata H, Nakajima K (2013) Cell polarity and initiation of migration. Compr Dev Neurosci Cell Migr Form Neuronal Connect Chapter 12:231–244
go back to reference Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69CrossRefPubMedPubMedCentral Sessa A, Mao CA, Hadjantonakis AK, Klein WH, Broccoli V (2008) Tbr2 directs conversion of radial glia into basal precursors and guides neuronal amplification by indirect neurogenesis in the developing neocortex. Neuron 60(1):56–69CrossRefPubMedPubMedCentral
go back to reference Sheldon M et al (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389(6652):730–733CrossRefPubMed Sheldon M et al (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389(6652):730–733CrossRefPubMed
go back to reference Shimojima K et al (2010) Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res 89(2–3):303–309CrossRefPubMed Shimojima K et al (2010) Genomic copy number variations at 17p13.3 and epileptogenesis. Epilepsy Res 89(2–3):303–309CrossRefPubMed
go back to reference Shu T et al (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44(2):263–277CrossRefPubMed Shu T et al (2004) Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44(2):263–277CrossRefPubMed
go back to reference Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872CrossRefPubMed Tabata H, Nakajima K (2001) Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience 103(4):865–872CrossRefPubMed
go back to reference Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50(6):507–511CrossRefPubMed Tabata H, Nakajima K (2008) Labeling embryonic mouse central nervous system cells by in utero electroporation. Dev Growth Differ 50(6):507–511CrossRefPubMed
go back to reference Tabata H, Kanatani S, Nakajima K (2009) Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19(9):2092–2105CrossRefPubMed Tabata H, Kanatani S, Nakajima K (2009) Differences of migratory behavior between direct progeny of apical progenitors and basal progenitors in the developing cerebral cortex. Cereb Cortex 19(9):2092–2105CrossRefPubMed
go back to reference Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1983) Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by the retrograde HRP method. J Comp Neurol 218(3):314–326CrossRefPubMed Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1983) Distribution and morphology of corticospinal tract neurons in reeler mouse cortex by the retrograde HRP method. J Comp Neurol 218(3):314–326CrossRefPubMed
go back to reference Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232(1):83–98CrossRefPubMed Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232(1):83–98CrossRefPubMed
go back to reference Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170(6):935–945CrossRefPubMedPubMedCentral Tsai JW, Chen Y, Kriegstein AR, Vallee RB (2005) LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol 170(6):935–945CrossRefPubMedPubMedCentral
go back to reference Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979CrossRefPubMed Tsai JW, Bremner KH, Vallee RB (2007) Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat Neurosci 10(8):970–979CrossRefPubMed
go back to reference Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA 104(41):16182–16187CrossRefPubMedPubMedCentral Umeshima H, Hirano T, Kengaku M (2007) Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc Natl Acad Sci USA 104(41):16182–16187CrossRefPubMedPubMedCentral
go back to reference Yoneshima H et al (1997) A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci Res 29(3):217–223CrossRefPubMed Yoneshima H et al (1997) A novel neurological mutant mouse, yotari, which exhibits reeler-like phenotype but expresses CR-50 antigen/reelin. Neurosci Res 29(3):217–223CrossRefPubMed
go back to reference Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009) Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 29(49):15520–15530CrossRefPubMedPubMedCentral Youn YH, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009) Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci 29(49):15520–15530CrossRefPubMedPubMedCentral
Metadata
Title
Enhanced expression of Pafah1b1 causes over-migration of cerebral cortical neurons into the marginal zone
Authors
Kei-ichi Katayama
Kanehiro Hayashi
Seika Inoue
Kazushige Sakaguchi
Kazunori Nakajima
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1497-9

Other articles of this Issue 9/2017

Brain Structure and Function 9/2017 Go to the issue