Skip to main content
Top
Published in: Brain Structure and Function 9/2017

01-12-2017 | Original Article

Discover mouse gene coexpression landscapes using dictionary learning and sparse coding

Authors: Yujie Li, Hanbo Chen, Xi Jiang, Xiang Li, Jinglei Lv, Hanchuan Peng, Joe Z. Tsien, Tianming Liu

Published in: Brain Structure and Function | Issue 9/2017

Login to get access

Abstract

Gene coexpression patterns carry rich information regarding enormously complex brain structures and functions. Characterization of these patterns in an unbiased, integrated, and anatomically comprehensive manner will illuminate the higher-order transcriptome organization and offer genetic foundations of functional circuitry. Here using dictionary learning and sparse coding, we derived coexpression networks from the space-resolved anatomical comprehensive in situ hybridization data from Allen Mouse Brain Atlas dataset. The key idea is that if two genes use the same dictionary to represent their original signals, then their gene expressions must share similar patterns, thereby considering them as “coexpressed.” For each network, we have simultaneous knowledge of spatial distributions, the genes in the network and the extent a particular gene conforms to the coexpression pattern. Gene ontologies and the comparisons with published gene lists reveal biologically identified coexpression networks, some of which correspond to major cell types, biological pathways, and/or anatomical regions.
Appendix
Available only for authorised users
Literature
go back to reference Brown CD, Johnson DS, Sidow A (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317(September):1557–1560CrossRefPubMed Brown CD, Johnson DS, Sidow A (2007) Functional architecture and evolution of transcriptional elements that drive gene coexpression. Science 317(September):1557–1560CrossRefPubMed
go back to reference Cahoy J, Emery B, Kaushal A, Foo L, Zamanian J, Christopherson K et al (2004) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neuronsci 28(1):264–278. doi:10.1523/JNEUROSCI.4178-07.2008 CrossRef Cahoy J, Emery B, Kaushal A, Foo L, Zamanian J, Christopherson K et al (2004) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neuronsci 28(1):264–278. doi:10.​1523/​JNEUROSCI.​4178-07.​2008 CrossRef
go back to reference Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499CrossRef Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499CrossRef
go back to reference Gaiteri C, Ding Y, French B, Tseng GC, Sibille E (2014) Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav 13(1):13–24. doi:10.1111/gbb.12106 CrossRefPubMed Gaiteri C, Ding Y, French B, Tseng GC, Sibille E (2014) Beyond modules and hubs: the potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders. Genes Brain Behav 13(1):13–24. doi:10.​1111/​gbb.​12106 CrossRefPubMed
go back to reference Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29(4):482–486. doi:10.1038/ng776 CrossRefPubMed Ge H, Liu Z, Church GM, Vidal M (2001) Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet 29(4):482–486. doi:10.​1038/​ng776 CrossRefPubMed
go back to reference Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinform 12(1):322. doi:10.1186/1471-2105-12-322 CrossRef Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S (2011) Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinform 12(1):322. doi:10.​1186/​1471-2105-12-322 CrossRef
go back to reference Ng L, Pathak SD, Kuan C, Lau C, Dong H, Sodt A et al (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans Comput Biol Bioinf 4(3):382–392. doi:10.1109/TCBB.2007.1035 CrossRef Ng L, Pathak SD, Kuan C, Lau C, Dong H, Sodt A et al (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans Comput Biol Bioinf 4(3):382–392. doi:10.​1109/​TCBB.​2007.​1035 CrossRef
go back to reference Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C et al (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9(1):99–107. doi:10.1038/nn1618 CrossRefPubMed Sugino K, Hempel CM, Miller MN, Hattox AM, Shapiro P, Wu C et al (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci 9(1):99–107. doi:10.​1038/​nn1618 CrossRefPubMed
Metadata
Title
Discover mouse gene coexpression landscapes using dictionary learning and sparse coding
Authors
Yujie Li
Hanbo Chen
Xi Jiang
Xiang Li
Jinglei Lv
Hanchuan Peng
Joe Z. Tsien
Tianming Liu
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 9/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1460-9

Other articles of this Issue 9/2017

Brain Structure and Function 9/2017 Go to the issue