Skip to main content
Top
Published in: Brain Structure and Function 3/2017

01-04-2017 | Review

The interlaminar glia: from serendipity to hypothesis

Author: Jorge A. Colombo

Published in: Brain Structure and Function | Issue 3/2017

Login to get access

Abstract

An account of work performed at the UNA laboratories since 1992 on the detection and description of interlaminar glial processes, is presented. The incidental observation (serendipity) of longer than expected glial processes in the superficial layers of the cerebral cortex in hemiparkinsonian Cebus apella monkeys, was expanded afterwards to cover the largest possible sampling of representatives of mammalian orders and species, as well as in experimental and pathological conditions, in human and non-human primates. The term interlaminar was coined to differentiate these processes from the classical astroglial stellate, intralaminar ones. Such account grew to the point of inspiring, on speculative grounds, possible roles in the organization of the cerebral cortex. Interlaminar glial processes represent an essentially primate characteristic, affected by neuropathological conditions such as DS and AD and experimental procedures affecting normal sensory input, suggesting thalamic involvement in their normal expression. Their ontogenetic development, phylogenetic evolution and aging changes are described.
Literature
go back to reference Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548CrossRefPubMed Allen NJ, Barres BA (2005) Signaling between glia and neurons: focus on synaptic plasticity. Curr Opin Neurobiol 15:542–548CrossRefPubMed
go back to reference Anderson B (1999) Commentary. A proof of the need for the spatial clustering of interneuronal connections to enhance cortical computation. Cereb Cortex 9:2–3CrossRefPubMed Anderson B (1999) Commentary. A proof of the need for the spatial clustering of interneuronal connections to enhance cortical computation. Cereb Cortex 9:2–3CrossRefPubMed
go back to reference Andriezen WL (1893) The neuroglia elements of the brain. Brit Med J 29:227–230CrossRef Andriezen WL (1893) The neuroglia elements of the brain. Brit Med J 29:227–230CrossRef
go back to reference Araque A, Parpura V, Sanzqiri RP, Haydon PG (1999) Tripartite synapses: glia the unacknowledged partner. TINS 22:208–215PubMed Araque A, Parpura V, Sanzqiri RP, Haydon PG (1999) Tripartite synapses: glia the unacknowledged partner. TINS 22:208–215PubMed
go back to reference Barres BA, Koroshetz WJ, Chun LLY, Corey DP (1990) Ion channel expression by white matter glia: the type 1 astrocyte. Neuron 5:527–544CrossRefPubMed Barres BA, Koroshetz WJ, Chun LLY, Corey DP (1990) Ion channel expression by white matter glia: the type 1 astrocyte. Neuron 5:527–544CrossRefPubMed
go back to reference Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Ann Rev Neurosci 21:149–186CrossRefPubMed Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Ann Rev Neurosci 21:149–186CrossRefPubMed
go back to reference Cajal SR (1904) In: Textura del sistema nervioso del hombre y de los vertebrados vol 2, Pt. 2, chpt. 37, pp 792–864. Madrid:Moya, Spain Cajal SR (1904) In: Textura del sistema nervioso del hombre y de los vertebrados vol 2, Pt. 2, chpt. 37, pp 792–864. Madrid:Moya, Spain
go back to reference Casseb GI, Varner JE (1987) Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol 105:2581–2588CrossRef Casseb GI, Varner JE (1987) Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper. J Cell Biol 105:2581–2588CrossRef
go back to reference Colombo JA (1994) Regional non-homogeneities in cortical astroglia in adult monkeys. Persistence of transitional forms. Proceedings of Society for Neuroscience 24th annual meeting 20 (2): 578.13, Miami, FL, USA Colombo JA (1994) Regional non-homogeneities in cortical astroglia in adult monkeys. Persistence of transitional forms. Proceedings of Society for Neuroscience 24th annual meeting 20 (2): 578.13, Miami, FL, USA
go back to reference Colombo JA (1995) Interlaminar astroglial processes in the cerebral cortex of adult primates:further characterization. In: Proceed Ist Int Conference on Glial Contributions to Behaviour, pp 117–118, Belfast Colombo JA (1995) Interlaminar astroglial processes in the cerebral cortex of adult primates:further characterization. In: Proceed Ist Int Conference on Glial Contributions to Behaviour, pp 117–118, Belfast
go back to reference Colombo JA (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats. Acta Anat (Basel) 155:57–62CrossRef Colombo JA (1996) Interlaminar astroglial processes in the cerebral cortex of adult monkeys but not of adult rats. Acta Anat (Basel) 155:57–62CrossRef
go back to reference Colombo JA (2000) Comentarios a propósito del cerebro de Albert Einstein. Medicina 60:530–532PubMed Colombo JA (2000) Comentarios a propósito del cerebro de Albert Einstein. Medicina 60:530–532PubMed
go back to reference Colombo JA (2001) A columnar-supporting mode of astroglial architecture in the cerebral cortex of adult primates. Neurobiology 9:1–16CrossRefPubMed Colombo JA (2001) A columnar-supporting mode of astroglial architecture in the cerebral cortex of adult primates. Neurobiology 9:1–16CrossRefPubMed
go back to reference Colombo JA, Puissant V (1994) Regional nonhomogeneities in cortical astroglia in adult monkeys. Persistence of transitiona forms. In: Annual Meeting-Society for Neuroscience abstract no 578.13, Miami, Fla Colombo JA, Puissant V (1994) Regional nonhomogeneities in cortical astroglia in adult monkeys. Persistence of transitiona forms. In: Annual Meeting-Society for Neuroscience abstract no 578.13, Miami, Fla
go back to reference Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131CrossRefPubMed Colombo JA, Reisin HD (2004) Interlaminar astroglia of the cerebral cortex: a marker of the primate brain. Brain Res 1006:126–131CrossRefPubMed
go back to reference Colombo JA, Yáñez A, Puissant V, Lipina S (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 40:551–556CrossRefPubMed Colombo JA, Yáñez A, Puissant V, Lipina S (1995) Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 40:551–556CrossRefPubMed
go back to reference Colombo JA, Yáñez A, Lipina S (1997a) Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury. J Brain Res 38:503–512 Colombo JA, Yáñez A, Lipina S (1997a) Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury. J Brain Res 38:503–512
go back to reference Colombo JA, Lipina S, Yáñez A, Puissant V (1997b) Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates. Int J Dev Neurosci 15:823–833CrossRefPubMed Colombo JA, Lipina S, Yáñez A, Puissant V (1997b) Postnatal development of interlaminar astroglial processes in the cerebral cortex of primates. Int J Dev Neurosci 15:823–833CrossRefPubMed
go back to reference Colombo JA, Gayol S, Yáñez A, Marco P (1997c) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48:352–357CrossRefPubMed Colombo JA, Gayol S, Yáñez A, Marco P (1997c) Immunocytochemical and electron microscope observations on astroglial interlaminar processes in the primate neocortex. J Neurosci Res 48:352–357CrossRefPubMed
go back to reference Colombo JA, Härtig W, Lipina S, Bons N (1998) Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anat Embryol 197:369–376CrossRefPubMed Colombo JA, Härtig W, Lipina S, Bons N (1998) Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anat Embryol 197:369–376CrossRefPubMed
go back to reference Colombo JA, Schleicher A, Zilles K (1999a) Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of New World Monkeys. Glia 25:85–92CrossRefPubMed Colombo JA, Schleicher A, Zilles K (1999a) Patterned distribution of immunoreactive astroglial processes in the striate (V1) cortex of New World Monkeys. Glia 25:85–92CrossRefPubMed
go back to reference Colombo JA, Yáñez A, Lipina S (1999b) Disruption of patterns of immunoreactive glial fibrillary acidic protein processes in the Cebus apella striate cortex following loss of visual input. J Brain Res 4:449–453 Colombo JA, Yáñez A, Lipina S (1999b) Disruption of patterns of immunoreactive glial fibrillary acidic protein processes in the Cebus apella striate cortex following loss of visual input. J Brain Res 4:449–453
go back to reference Colombo JA, Fuchs E, Härtig W, Marotte LR, Puissant V (2000) “Rodent-like” and “primate-like” types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study. Anat Embryol 201:111–120CrossRefPubMed Colombo JA, Fuchs E, Härtig W, Marotte LR, Puissant V (2000) “Rodent-like” and “primate-like” types of astroglial architecture in the adult cerebral cortex of mammals: a comparative study. Anat Embryol 201:111–120CrossRefPubMed
go back to reference Colombo JA, Napp MI, Yáñez A, Reisin H (2001) Tissue printing of astroglial interlaminar processes from human and non-human primate cerebral cortex. Brain Res Bull 55:561–565CrossRefPubMed Colombo JA, Napp MI, Yáñez A, Reisin H (2001) Tissue printing of astroglial interlaminar processes from human and non-human primate cerebral cortex. Brain Res Bull 55:561–565CrossRefPubMed
go back to reference Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242CrossRefPubMed Colombo JA, Quinn B, Puissant V (2002) Disruption of astroglial interlaminar processes in Alzheimer’s disease. Brain Res Bull 58:235–242CrossRefPubMed
go back to reference Colombo JA, Sherwood C, Hof P (2004) Interlaminar astroglial processes in the cerebral cortex of great apes. Anat Embryol 429:391–394 Colombo JA, Sherwood C, Hof P (2004) Interlaminar astroglial processes in the cerebral cortex of great apes. Anat Embryol 429:391–394
go back to reference Colombo JA, Reisin HD, Jones M, Bentham C (2005) Development of interlaminar astroglial processes in the cerebral cortex of control and Down’s syndrome human cases. Exp Neurol 193:207–217CrossRefPubMed Colombo JA, Reisin HD, Jones M, Bentham C (2005) Development of interlaminar astroglial processes in the cerebral cortex of control and Down’s syndrome human cases. Exp Neurol 193:207–217CrossRefPubMed
go back to reference Colombo JA, Reisin HD, Miguel-Hidalgo JJ, Rajkowska G (2006) Cerebral cortex astroglia and the brain of a genius: a propos of A. Einstein’s. Brain Res Rev 52:257–263CrossRefPubMedPubMedCentral Colombo JA, Reisin HD, Miguel-Hidalgo JJ, Rajkowska G (2006) Cerebral cortex astroglia and the brain of a genius: a propos of A. Einstein’s. Brain Res Rev 52:257–263CrossRefPubMedPubMedCentral
go back to reference D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM II, Janigro D (1998) Functional hippocampal astrocytes. J Neurosci 18:4425–4438PubMedPubMedCentral D’Ambrosio R, Wenzel J, Schwartzkroin PA, McKhann GM II, Janigro D (1998) Functional hippocampal astrocytes. J Neurosci 18:4425–4438PubMedPubMedCentral
go back to reference DeFelipe J, Markram H, Rockland KS (2012) The neocortical column. Front Neuroanat 6:1–2CrossRef DeFelipe J, Markram H, Rockland KS (2012) The neocortical column. Front Neuroanat 6:1–2CrossRef
go back to reference Dierig S (1994) Extending the neuron doctrine: carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. TINS 17:449–452PubMed Dierig S (1994) Extending the neuron doctrine: carl Ludwig Schleich (1859–1922) and his reflections on neuroglia at the inception of the neural-network concept in 1894. TINS 17:449–452PubMed
go back to reference Gaspar P, Colombo JA, Puissant V, Berger B (1992) Long term alterations of the aminergic innervations in MPTP-induced hemiparkinsonism in Cebus monkeys. Meet Europ Neurosci Ass, Amsterdam, The Netherlands Gaspar P, Colombo JA, Puissant V, Berger B (1992) Long term alterations of the aminergic innervations in MPTP-induced hemiparkinsonism in Cebus monkeys. Meet Europ Neurosci Ass, Amsterdam, The Netherlands
go back to reference Gaspar P, Febret A, Colombo JA (1993) Serotoninergic sprouting in primate MPTP-induced hemiparkinsonism. Exp Brain Res 96:100–106CrossRefPubMed Gaspar P, Febret A, Colombo JA (1993) Serotoninergic sprouting in primate MPTP-induced hemiparkinsonism. Exp Brain Res 96:100–106CrossRefPubMed
go back to reference Gayol S, Pannicke T, Reichenbach A, Colombo JA (1999) Cell–cell coupling in cultures of striatal and cortical astrocyte of the monkey Cebus apella. J Brain Res 4:473–479 Gayol S, Pannicke T, Reichenbach A, Colombo JA (1999) Cell–cell coupling in cultures of striatal and cortical astrocyte of the monkey Cebus apella. J Brain Res 4:473–479
go back to reference Giaume C, Liu X (2012) From a glial syncytium to a more restricted and specific glial networking. J Phys Paris 106:34–39CrossRef Giaume C, Liu X (2012) From a glial syncytium to a more restricted and specific glial networking. J Phys Paris 106:34–39CrossRef
go back to reference Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev 11:87–99CrossRef Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev 11:87–99CrossRef
go back to reference Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu O, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353CrossRefPubMedPubMedCentral Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu O, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M (2013) Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–353CrossRefPubMedPubMedCentral
go back to reference Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859PubMed Höfer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859PubMed
go back to reference Hortega Del Rio (1942) La neuroglia normal. Conceptos de angiogliona y neurogliona. Arch Histol Normal Patol 1:5–71 Hortega Del Rio (1942) La neuroglia normal. Conceptos de angiogliona y neurogliona. Arch Histol Normal Patol 1:5–71
go back to reference Jones EG (2001) The thalamic matrix and thalamocortical synchrony. TINS 24:595–601PubMed Jones EG (2001) The thalamic matrix and thalamocortical synchrony. TINS 24:595–601PubMed
go back to reference Kettenmann H, Ransom B (2005) The concept of neuroglia: a historical perspective. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1–16 Kettenmann H, Ransom B (2005) The concept of neuroglia: a historical perspective. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford, pp 1–16
go back to reference Kufler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on glial membrane potential. Proc R Soc B 168:1–28CrossRef Kufler SW (1967) Neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on glial membrane potential. Proc R Soc B 168:1–28CrossRef
go back to reference Lanosa X, Reisin HD, Santacroce I, Colombo JA (2008) Astroglial dye-coupling: and in vitro analysis of regional interspecies differences in rodents and primates. Brain Res 1240:82–86CrossRefPubMed Lanosa X, Reisin HD, Santacroce I, Colombo JA (2008) Astroglial dye-coupling: and in vitro analysis of regional interspecies differences in rodents and primates. Brain Res 1240:82–86CrossRefPubMed
go back to reference Lewis TJ, Rinzel J (2000) Self-organized synchronous oscillations in a network of excitable coupled gap junctions. Netw Comput Neural Syst 11:299–320CrossRef Lewis TJ, Rinzel J (2000) Self-organized synchronous oscillations in a network of excitable coupled gap junctions. Netw Comput Neural Syst 11:299–320CrossRef
go back to reference Martinotti C (1889) Contributo allo studio della corteccia cerebrale, ed all’origine centrale dei nervi. Ann Fren Sci Affin 1:314–332 Martinotti C (1889) Contributo allo studio della corteccia cerebrale, ed all’origine centrale dei nervi. Ann Fren Sci Affin 1:314–332
go back to reference Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMed Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434PubMed
go back to reference Mountcastle VB (1974) Neural mechanisms in somesthesia. In: Mountcastle VB (ed) Medical physiology. The CV Mosby Co, St. Louis, pp 307–347 Mountcastle VB (1974) Neural mechanisms in somesthesia. In: Mountcastle VB (ed) Medical physiology. The CV Mosby Co, St. Louis, pp 307–347
go back to reference Mugnaini E (1986) Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 1. Academic Press Inc, NY, pp 329–371CrossRef Mugnaini E (1986) Cell junctions of astrocytes, ependyma, and related cells in the mammalian central nervous system, with emphasis on the hypothesis of a generalized functional syncytium of supporting cells. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 1. Academic Press Inc, NY, pp 329–371CrossRef
go back to reference Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215CrossRefPubMed Nicholson C, Sykova E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21:207–215CrossRefPubMed
go back to reference Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann GJ, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287CrossRefPubMedPubMedCentral Oberheim NA, Takano T, Han X, He W, Lin JHC, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann GJ, Ransom BR, Goldman SA, Nedergaard M (2009) Uniquely hominid features of adult human astrocytes. J Neurosci 29:3276–3287CrossRefPubMedPubMedCentral
go back to reference Perea G, Navarrete M, Araque A (2009) A tripartite synapses: astrocyte process and control synaptic information. Trends Neurosci 32:421–431CrossRefPubMed Perea G, Navarrete M, Araque A (2009) A tripartite synapses: astrocyte process and control synaptic information. Trends Neurosci 32:421–431CrossRefPubMed
go back to reference Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford Reichenbach A, Wolburg H (2005) Astrocytes and ependymal glia. In: Kettenman H, Ransom BR (eds) Neuroglia. Oxford University Press, Oxford
go back to reference Reisin HD, Colombo JA (2002a) Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Mol Neurobiol 22:633–644CrossRefPubMed Reisin HD, Colombo JA (2002a) Considerations on the astroglial architecture and the columnar organization of the cerebral cortex. Cell Mol Neurobiol 22:633–644CrossRefPubMed
go back to reference Reisin HD, Colombo JA (2002b) Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles. Brain Res 937:51–57CrossRefPubMed Reisin HD, Colombo JA (2002b) Astroglial interlaminar processes in human cerebral cortex: variations in cytoskeletal profiles. Brain Res 937:51–57CrossRefPubMed
go back to reference Reisin H, Colombo JA (2004) Glial changes in primate cerebral cortex following long-term sensory deprivation. Brain Res 1000:179–182CrossRefPubMed Reisin H, Colombo JA (2004) Glial changes in primate cerebral cortex following long-term sensory deprivation. Brain Res 1000:179–182CrossRefPubMed
go back to reference Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865CrossRefPubMed Rempel-Clower NL, Barbas H (2000) The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb Cortex 10:851–865CrossRefPubMed
go back to reference Retzius G (1894) Die Neuroglia des Gehirns beim Menschen und bei Säugethieren. Biol Untersuchungen, Neue Folge 6: 1–28. Verlag, Jena Retzius G (1894) Die Neuroglia des Gehirns beim Menschen und bei Säugethieren. Biol Untersuchungen, Neue Folge 6: 1–28. Verlag, Jena
go back to reference Robertson JM (2014) Astrocytes and the evolution of the human brain. Med Hypoth 82:236–239CrossRef Robertson JM (2014) Astrocytes and the evolution of the human brain. Med Hypoth 82:236–239CrossRef
go back to reference Rouach N, Koulakoff A, Giaume C (2004) Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 45:265–272CrossRefPubMed Rouach N, Koulakoff A, Giaume C (2004) Neurons set the tone of gap junctional communication in astrocytic networks. Neurochem Int 45:265–272CrossRefPubMed
go back to reference Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555CrossRefPubMed Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–1555CrossRefPubMed
go back to reference Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comput Neurol 510:117–128CrossRef Schenker NM, Buxhoeveden DP, Blackmon WL, Amunts K, Zilles K, Semendeferi K (2008) A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. J Comput Neurol 510:117–128CrossRef
go back to reference Schlaug G, Schleicher A, Zilles KJ (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. Comput Neurol 351:441–452CrossRef Schlaug G, Schleicher A, Zilles KJ (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. Comput Neurol 351:441–452CrossRef
go back to reference Shiramatsu IT, Takahashi K, Noda T, Kanzaki R, Nakahara H, Takahashi A (2016) Microelectrode mapping of tonotopic, laminar and field’s specific organization of thalamo-cortical pathway in the rat. Neuroscience 332:38–52CrossRefPubMed Shiramatsu IT, Takahashi K, Noda T, Kanzaki R, Nakahara H, Takahashi A (2016) Microelectrode mapping of tonotopic, laminar and field’s specific organization of thalamo-cortical pathway in the rat. Neuroscience 332:38–52CrossRefPubMed
go back to reference Simonton DK (1999) “The origins of genius” (Darwinian perspectives on creativity). Oxford University Press, New York Simonton DK (1999) “The origins of genius” (Darwinian perspectives on creativity). Oxford University Press, New York
go back to reference Singer W (1995) Development and poasticity of cortical processing architectures. Science 270:758–763CrossRefPubMed Singer W (1995) Development and poasticity of cortical processing architectures. Science 270:758–763CrossRefPubMed
go back to reference Varon S, Somjen GG (1979) In: “Neuron-glia interactions” Neurosci Res Program Bull. 17:1–239. Boston-Mass Varon S, Somjen GG (1979) In: “Neuron-glia interactions” Neurosci Res Program Bull. 17:1–239. Boston-Mass
go back to reference Verkhratsky A, Butt AM (2013) In: Verkhratsky A, Butt AM (eds) Glial physiology and pathophysiology. Wiley, NJCrossRef Verkhratsky A, Butt AM (2013) In: Verkhratsky A, Butt AM (eds) Glial physiology and pathophysiology. Wiley, NJCrossRef
go back to reference Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc B 371:20150428CrossRef Verkhratsky A, Nedergaard M (2016) The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc B 371:20150428CrossRef
go back to reference Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Progr Neurobiol 49:185–214CrossRef Vernadakis A (1996) Glia-neuron intercommunications and synaptic plasticity. Progr Neurobiol 49:185–214CrossRef
go back to reference von Bonin G, Mehler WR (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9CrossRef von Bonin G, Mehler WR (1971) On columnar arrangement of nerve cells in cerebral cortex. Brain Res 27:1–9CrossRef
Metadata
Title
The interlaminar glia: from serendipity to hypothesis
Author
Jorge A. Colombo
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1332-8

Other articles of this Issue 3/2017

Brain Structure and Function 3/2017 Go to the issue