Skip to main content
Top
Published in: Brain Structure and Function 4/2017

01-05-2017 | Practical Guide

A practical guide for the identification of major sulcogyral structures of the human cortex

Authors: Christophe Destrieux, Louis Marie Terrier, Frédéric Andersson, Scott A. Love, Jean-Philippe Cottier, Henri Duvernoy, Stéphane Velut, Kevin Janot, Ilyess Zemmoura

Published in: Brain Structure and Function | Issue 4/2017

Login to get access

Abstract

The precise sulcogyral localization of cortical lesions is mandatory to improve communication between practitioners and to predict and prevent post-operative deficits. This process, which assumes a good knowledge of the cortex anatomy and a systematic analysis of images, is, nevertheless, sometimes neglected in the neurological and neurosurgical training. This didactic paper proposes a brief overview of the sulcogyral anatomy, using conventional MR-slices, and also reconstructions of the cortical surface after a more or less extended inflation process. This method simplifies the cortical anatomy by removing part of the cortical complexity induced by the folding process, and makes it more understandable. We then reviewed several methods for localizing cortical structures, and proposed a three-step identification: after localizing the lateral, medial or ventro-basal aspect of the hemisphere (step 1), the main interlobar sulci were located to limit the lobes (step 2). Finally, intralobar sulci and gyri were identified (step 3) thanks to the same set of rules. This paper does not propose any new identification method but should be regarded as a set of practical guidelines, useful in daily clinical practice, for detecting the main sulci and gyri of the human cortex.
Literature
go back to reference Braun M, Anxionnat R, Marchal C et al (2000) Radioanatomy of the cerebral cortex. Practical guide of identification. J Radiol 81:704–716PubMed Braun M, Anxionnat R, Marchal C et al (2000) Radioanatomy of the cerebral cortex. Practical guide of identification. J Radiol 81:704–716PubMed
go back to reference Broca P (1878) Nomenclature Cérébrale. Dénomination des divisions et subdivisions des hémisphères et des anfractuosités de leur surface. Rev Anthropol 2:193–236 Broca P (1878) Nomenclature Cérébrale. Dénomination des divisions et subdivisions des hémisphères et des anfractuosités de leur surface. Rev Anthropol 2:193–236
go back to reference Clouchoux C, Coulon O, Anton J-L et al (2006) A new cortical surface parcellation model and its automatic implementation. Med Image Comput Comput-Assist Interv MICCAI Int Conf Med Image Comput Comput-Assist Interv 9:193–200 Clouchoux C, Coulon O, Anton J-L et al (2006) A new cortical surface parcellation model and its automatic implementation. Med Image Comput Comput-Assist Interv MICCAI Int Conf Med Image Comput Comput-Assist Interv 9:193–200
go back to reference Cunningham DJ (1892) Contribution to the surface anatomy of the cerebral hemispheres. Academy House, Dublin Cunningham DJ (1892) Contribution to the surface anatomy of the cerebral hemispheres. Academy House, Dublin
go back to reference Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194CrossRefPubMed
go back to reference Duvernoy HM (1999) The human brain. Surface, blood supply, and three-dimensional sectional anatomy, 2nd edn. Springer, Wien, New York Duvernoy HM (1999) The human brain. Surface, blood supply, and three-dimensional sectional anatomy, 2nd edn. Springer, Wien, New York
go back to reference Ecker A (1873) The cerebral convolutions of man: represented according to original observations, especially upon their development in the foetus, intended for the use of physicians. Appleton & Co., New York Ecker A (1873) The cerebral convolutions of man: represented according to original observations, especially upon their development in the foetus, intended for the use of physicians. Appleton & Co., New York
go back to reference Federative Committee on Anatomical Terminology (1998) Terminologia anatomica: international anatomical terminology. Thieme, Stuttgart, New York Federative Committee on Anatomical Terminology (1998) Terminologia anatomica: international anatomical terminology. Thieme, Stuttgart, New York
go back to reference Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207CrossRefPubMed Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207CrossRefPubMed
go back to reference Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed Fischl B, Salat DH, Busa E et al (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33:341–355CrossRefPubMed
go back to reference Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMed Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22CrossRefPubMed
go back to reference Gratiolet P (1854) Mémoire sur les plis cérébraux de l’homme et des primates. Arthus Bertrand, Paris Gratiolet P (1854) Mémoire sur les plis cérébraux de l’homme et des primates. Arthus Bertrand, Paris
go back to reference Meyer JR, Roychowdhury S, Russell EJ et al (1996) Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. AJNR Am J Neuroradiol 17:1699–1706PubMed Meyer JR, Roychowdhury S, Russell EJ et al (1996) Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. AJNR Am J Neuroradiol 17:1699–1706PubMed
go back to reference Naidich TP, Brightbill TC (1996a) Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI. Int J Neuroradiol 2:313–338 Naidich TP, Brightbill TC (1996a) Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI. Int J Neuroradiol 2:313–338
go back to reference Naidich TP, Brightbill TC (1996b) The pars marginalis: part I. A “bracket” sign for the central sulcus in axial plane CT and MRI. Int J Neuroradiol 2:3–19 Naidich TP, Brightbill TC (1996b) The pars marginalis: part I. A “bracket” sign for the central sulcus in axial plane CT and MRI. Int J Neuroradiol 2:3–19
go back to reference Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part I-normal specimens and magnetic resonance imaging. Neurosurgery 36:517–532CrossRefPubMed Naidich TP, Valavanis AG, Kubik S (1995) Anatomic relationships along the low-middle convexity: part I-normal specimens and magnetic resonance imaging. Neurosurgery 36:517–532CrossRefPubMed
go back to reference Naidich TP, Valavanis AG, Kubik S et al (1997) Anatomic relationships along the low-middle convexity: part II: lesion localization. Int J Neuroradiol 3:393–409 Naidich TP, Valavanis AG, Kubik S et al (1997) Anatomic relationships along the low-middle convexity: part II: lesion localization. Int J Neuroradiol 3:393–409
go back to reference Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. G. Thieme Verlag, Thieme Medical Publishers, New York, Stuttgart Ono M, Kubik S, Abernathey CD (1990) Atlas of the cerebral sulci. G. Thieme Verlag, Thieme Medical Publishers, New York, Stuttgart
go back to reference Regis J, Mangin JF, Ochiai T et al (2005) “Sulcal root” generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol Med Chir Tokyo 45:1–17CrossRefPubMed Regis J, Mangin JF, Ochiai T et al (2005) “Sulcal root” generic model: a hypothesis to overcome the variability of the human cortex folding patterns. Neurol Med Chir Tokyo 45:1–17CrossRefPubMed
go back to reference Rettmann ME, Han X, Xu C, Prince JL (2002) Automated sulcal segmentation using watersheds on the cortical surface. Neuroimage 15:329–344CrossRefPubMed Rettmann ME, Han X, Xu C, Prince JL (2002) Automated sulcal segmentation using watersheds on the cortical surface. Neuroimage 15:329–344CrossRefPubMed
go back to reference Roland PE, Graufelds CJ, Wahlin J, Ingelman L (1994) Human brain atlas: for high-resolution functional and anatomical mapping. Hum Brain Mapp 1:173–184CrossRefPubMed Roland PE, Graufelds CJ, Wahlin J, Ingelman L (1994) Human brain atlas: for high-resolution functional and anatomical mapping. Hum Brain Mapp 1:173–184CrossRefPubMed
go back to reference Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B, Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22(3):1060–1075CrossRefPubMed Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B, Ségonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22(3):1060–1075CrossRefPubMed
go back to reference Van Essen DC, Drury HA (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17:7079–7102PubMed Van Essen DC, Drury HA (1997) Structural and functional analyses of human cerebral cortex using a surface-based atlas. J Neurosci 17:7079–7102PubMed
go back to reference Zilles K, Schleicher A, Langemann C et al (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5:218–221CrossRefPubMed Zilles K, Schleicher A, Langemann C et al (1997) Quantitative analysis of sulci in the human cerebral cortex: development, regional heterogeneity, gender difference, asymmetry, intersubject variability and cortical architecture. Hum Brain Mapp 5:218–221CrossRefPubMed
Metadata
Title
A practical guide for the identification of major sulcogyral structures of the human cortex
Authors
Christophe Destrieux
Louis Marie Terrier
Frédéric Andersson
Scott A. Love
Jean-Philippe Cottier
Henri Duvernoy
Stéphane Velut
Kevin Janot
Ilyess Zemmoura
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1320-z

Other articles of this Issue 4/2017

Brain Structure and Function 4/2017 Go to the issue