Skip to main content
Top
Published in: Brain Structure and Function 3/2017

Open Access 01-04-2017 | Original Article

Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain

Authors: Arnauld Belmer, Paul M. Klenowski, Omkar L. Patkar, Selena E. Bartlett

Published in: Brain Structure and Function | Issue 3/2017

Login to get access

Abstract

Serotonin neurons arise from the brainstem raphe nuclei and send their projections throughout the brain to release 5-HT which acts as a modulator of several neuronal populations. Previous electron microscopy studies in rats have morphologically determined the distribution of 5-HT release sites (boutons) in certain brain regions and have shown that 5-HT containing boutons form synaptic contacts that are either symmetric or asymmetric. In addition, 5-HT boutons can form synaptic triads with the pre- and postsynaptic specializations of either symmetrical or asymmetrical synapses. However, due to the labor intensive processing of serial sections required by electron microscopy, little is known about the neurochemical properties or the quantitative distribution of 5-HT triads within whole brain or discrete subregions. Therefore, we used a semi-automated approach that combines immunohistochemistry and high-resolution confocal microscopy to label serotonin transporter (SERT) immunoreactive axons and reconstruct in 3D their distribution within limbic brain regions. We also used antibodies against key pre- (synaptophysin) and postsynaptic components of excitatory (PSD95) or inhibitory (gephyrin) synapses to (1) identify putative 5-HTergic boutons within SERT immunoreactive axons and, (2) quantify their close apposition to neurochemical excitatory or inhibitory synapses. We provide a 5-HTergic axon density map and have determined the ratio of synaptic triads consisting of a 5-HT bouton in close proximity to either neurochemical excitatory or inhibitory synapses within different limbic brain areas. The ability to model and map changes in 5-HTergic axonal density and the formation of triadic connectivity within whole brain regions using this rapid and quantitative approach offers new possibilities for studying neuroplastic changes in the 5-HTergic pathway.
Appendix
Available only for authorised users
Literature
go back to reference Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599CrossRefPubMed Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36:589–599CrossRefPubMed
go back to reference Audet MA, Descarries L, Doucet G (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex. J Chem Neuroanat 2:29–44PubMed Audet MA, Descarries L, Doucet G (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of adult rat cerebral cortex. J Chem Neuroanat 2:29–44PubMed
go back to reference Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci Off J Soc Neurosci 20:1952–1963 Brown P, Molliver ME (2000) Dual serotonin (5-HT) projections to the nucleus accumbens core and shell: relation of the 5-HT transporter to amphetamine-induced neurotoxicity. J Neurosci Off J Soc Neurosci 20:1952–1963
go back to reference Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci Off J Soc Neurosci 18:4854–4860 Bunin MA, Wightman RM (1998) Quantitative evaluation of 5-hydroxytryptamine (serotonin) neuronal release and uptake: an investigation of extrasynaptic transmission. J Neurosci Off J Soc Neurosci 18:4854–4860
go back to reference Cameron DL, Williams JT (1994) Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci Off J Soc Neurosci 14:6763–6767 Cameron DL, Williams JT (1994) Cocaine inhibits GABA release in the VTA through endogenous 5-HT. J Neurosci Off J Soc Neurosci 14:6763–6767
go back to reference Ciranna L (2006) Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 4:101–114CrossRefPubMedPubMedCentral Ciranna L (2006) Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr Neuropharmacol 4:101–114CrossRefPubMedPubMedCentral
go back to reference De-Miguel FF, Trueta C (2005) Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297–312CrossRefPubMed De-Miguel FF, Trueta C (2005) Synaptic and extrasynaptic secretion of serotonin. Cell Mol Neurobiol 25:297–312CrossRefPubMed
go back to reference Descarries L, Riad M, Parent M (2010) Ultrastructure of the serotonin innervation in the mammalian central nervous system. In: Jacobs BL, Müller CP (eds) Handbook of behavioral neuroscience. Elsevier, Amsterdam, pp 65–101 Descarries L, Riad M, Parent M (2010) Ultrastructure of the serotonin innervation in the mammalian central nervous system. In: Jacobs BL, Müller CP (eds) Handbook of behavioral neuroscience. Elsevier, Amsterdam, pp 65–101
go back to reference Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine 7 years previously: factors influencing abnormal recovery. J Neurosci Off J Soc Neurosci 19:5096–5107 Hatzidimitriou G, McCann UD, Ricaurte GA (1999) Altered serotonin innervation patterns in the forebrain of monkeys treated with (±)3,4-methylenedioxymethamphetamine 7 years previously: factors influencing abnormal recovery. J Neurosci Off J Soc Neurosci 19:5096–5107
go back to reference Hervé D, Pickel VM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435:71–83CrossRefPubMed Hervé D, Pickel VM, Joh TH, Beaudet A (1987) Serotonin axon terminals in the ventral tegmental area of the rat: fine structure and synaptic input to dopaminergic neurons. Brain Res 435:71–83CrossRefPubMed
go back to reference Ippolito DM, Eroglu C (2010) Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp JoVE. doi:10.3791/2270 PubMed Ippolito DM, Eroglu C (2010) Quantifying synapses: an immunocytochemistry-based assay to quantify synapse number. J Vis Exp JoVE. doi:10.​3791/​2270 PubMed
go back to reference Jiang X, Xing G, Yang C et al (2008) Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 34:410–423. doi:10.1038/npp.2008.71 CrossRefPubMed Jiang X, Xing G, Yang C et al (2008) Stress impairs 5-HT2A receptor-mediated serotonergic facilitation of GABA release in juvenile rat basolateral amygdala. Neuropsychopharmacology 34:410–423. doi:10.​1038/​npp.​2008.​71 CrossRefPubMed
go back to reference Johnson SW, Mercuri NB, North RA (1992) 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci Off J Soc Neurosci 12:2000–2006 Johnson SW, Mercuri NB, North RA (1992) 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci Off J Soc Neurosci 12:2000–2006
go back to reference Kasper JM, Booth RG, Peris J (2015) Serotonin-2C receptor agonists decrease potassium-stimulated GABA release in the nucleus accumbens. Synap N Y N 69:78–85. doi:10.1002/syn.21790 CrossRef Kasper JM, Booth RG, Peris J (2015) Serotonin-2C receptor agonists decrease potassium-stimulated GABA release in the nucleus accumbens. Synap N Y N 69:78–85. doi:10.​1002/​syn.​21790 CrossRef
go back to reference Kishimoto K, Koyama S, Akaike N (2000) Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. Eur J Pharmacol 407:257–265CrossRefPubMed Kishimoto K, Koyama S, Akaike N (2000) Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. Eur J Pharmacol 407:257–265CrossRefPubMed
go back to reference Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons. J Physiol 518(Pt 2):525–538CrossRefPubMedPubMedCentral Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons. J Physiol 518(Pt 2):525–538CrossRefPubMedPubMedCentral
go back to reference Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 529(Pt 2):373–383CrossRefPubMedPubMedCentral Koyama S, Matsumoto N, Kubo C, Akaike N (2000) Presynaptic 5-HT3 receptor-mediated modulation of synaptic GABA release in the mechanically dissociated rat amygdala neurons. J Physiol 529(Pt 2):373–383CrossRefPubMedPubMedCentral
go back to reference Koyama S, Matsumoto N, Murakami N et al (2002) Role of presynaptic 5-HT1A and 5-HT3 receptors in modulation of synaptic GABA transmission in dissociated rat basolateral amygdala neurons. Life Sci 72:375–387CrossRefPubMed Koyama S, Matsumoto N, Murakami N et al (2002) Role of presynaptic 5-HT1A and 5-HT3 receptors in modulation of synaptic GABA transmission in dissociated rat basolateral amygdala neurons. Life Sci 72:375–387CrossRefPubMed
go back to reference Lang EJ, Paré D (1997) Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. J Neurophysiol 77:353–363PubMed Lang EJ, Paré D (1997) Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. J Neurophysiol 77:353–363PubMed
go back to reference Lang EJ, Paré D (1998) Synaptic responsiveness of interneurons of the cat lateral amygdaloid nucleus. Neuroscience 83:877–889CrossRefPubMed Lang EJ, Paré D (1998) Synaptic responsiveness of interneurons of the cat lateral amygdaloid nucleus. Neuroscience 83:877–889CrossRefPubMed
go back to reference Lebrand C, Cases O, Wehrlé R et al (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401:506–524CrossRefPubMed Lebrand C, Cases O, Wehrlé R et al (1998) Transient developmental expression of monoamine transporters in the rodent forebrain. J Comp Neurol 401:506–524CrossRefPubMed
go back to reference Marek GJ, Aghajanian GK (1998) The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis. Biol Psychiatry 44:1118–1127CrossRefPubMed Marek GJ, Aghajanian GK (1998) The electrophysiology of prefrontal serotonin systems: therapeutic implications for mood and psychosis. Biol Psychiatry 44:1118–1127CrossRefPubMed
go back to reference McMahon HT, Bolshakov VY, Janz R et al (1996) Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci U S A 93:4760–4764CrossRefPubMedPubMedCentral McMahon HT, Bolshakov VY, Janz R et al (1996) Synaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci U S A 93:4760–4764CrossRefPubMedPubMedCentral
go back to reference Miner LH, Schroeter S, Blakely RD, Sesack SR (2000) Ultrastructural localization of the serotonin transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to dopamine terminals. J Comp Neurol 427:220–234CrossRefPubMed Miner LH, Schroeter S, Blakely RD, Sesack SR (2000) Ultrastructural localization of the serotonin transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to dopamine terminals. J Comp Neurol 427:220–234CrossRefPubMed
go back to reference Muller JF, Mascagni F, McDonald AJ (2007) Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J Comp Neurol 505:314–335. doi:10.1002/cne.21486 CrossRefPubMed Muller JF, Mascagni F, McDonald AJ (2007) Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala. J Comp Neurol 505:314–335. doi:10.​1002/​cne.​21486 CrossRefPubMed
go back to reference Nielsen K, Brask D, Knudsen GM, Aznar S (2006) Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin. Synap N Y N 59:270–276. doi:10.1002/syn.20240 CrossRef Nielsen K, Brask D, Knudsen GM, Aznar S (2006) Immunodetection of the serotonin transporter protein is a more valid marker for serotonergic fibers than serotonin. Synap N Y N 59:270–276. doi:10.​1002/​syn.​20240 CrossRef
go back to reference Nunez-Parra A, Maurer RK, Krahe K, Smith RS, Araneda RC (2013) Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 110(36):14777–14782CrossRefPubMedPubMedCentral Nunez-Parra A, Maurer RK, Krahe K, Smith RS, Araneda RC (2013) Disruption of centrifugal inhibition to olfactory bulb granule cells impairs olfactory discrimination. Proc Natl Acad Sci U S A 110(36):14777–14782CrossRefPubMedPubMedCentral
go back to reference Oleskevich S, Descarries L, Watkins KC et al (1991) Ultrastructural features of the serotonin innervation in adult rat hippocampus: an immunocytochemical description in single and serial thin sections. Neuroscience 42:777–791CrossRefPubMed Oleskevich S, Descarries L, Watkins KC et al (1991) Ultrastructural features of the serotonin innervation in adult rat hippocampus: an immunocytochemical description in single and serial thin sections. Neuroscience 42:777–791CrossRefPubMed
go back to reference Pickel VM, Chan J (1999) Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens. J Neurosci Off J Soc Neurosci 19:7356–7366 Pickel VM, Chan J (1999) Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens. J Neurosci Off J Soc Neurosci 19:7356–7366
go back to reference Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85PubMed Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82:69–85PubMed
go back to reference Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Inhibitory transmission in the basolateral amygdala. J Neurophysiol 66:999–1009PubMed Rainnie DG, Asprodini EK, Shinnick-Gallagher P (1991) Inhibitory transmission in the basolateral amygdala. J Neurophysiol 66:999–1009PubMed
go back to reference Schrader M, Hell SW, Van der Voort HTM (1996) Potential of confocal microscopes to resolve in the 50–100 nm range. Appl Phys Lett 69:3644–3646CrossRef Schrader M, Hell SW, Van der Voort HTM (1996) Potential of confocal microscopes to resolve in the 50–100 nm range. Appl Phys Lett 69:3644–3646CrossRef
go back to reference Snyder-Keller AM, Keller RW (1993) Prenatal cocaine increases striatal serotonin innervation without altering the patch/matrix organization of intrinsic cell types. Brain Res Dev Brain Res 74:261–267CrossRefPubMed Snyder-Keller AM, Keller RW (1993) Prenatal cocaine increases striatal serotonin innervation without altering the patch/matrix organization of intrinsic cell types. Brain Res Dev Brain Res 74:261–267CrossRefPubMed
go back to reference Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847):71–76CrossRefPubMedPubMedCentral Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM et al (2007) A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 318(5847):71–76CrossRefPubMedPubMedCentral
go back to reference Van Bockstaele EJ, Pickel VM (1993) Ultrastructure of serotonin-immunoreactive terminals in the core and shell of the rat nucleus accumbens: cellular substrates for interactions with catecholamine afferents. J Comp Neurol 334:603–617. doi:10.1002/cne.903340408 CrossRefPubMed Van Bockstaele EJ, Pickel VM (1993) Ultrastructure of serotonin-immunoreactive terminals in the core and shell of the rat nucleus accumbens: cellular substrates for interactions with catecholamine afferents. J Comp Neurol 334:603–617. doi:10.​1002/​cne.​903340408 CrossRefPubMed
go back to reference Veinante P, Freund-Mercier MJ (1998) Intrinsic and extrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus. Brain Res 794:188–198CrossRefPubMed Veinante P, Freund-Mercier MJ (1998) Intrinsic and extrinsic connections of the rat central extended amygdala: an in vivo electrophysiological study of the central amygdaloid nucleus. Brain Res 794:188–198CrossRefPubMed
go back to reference Wang G, Smith SJ (2012) Sub-diffraction limit localization of proteins in volumetric space using bayesian restoration of fluorescence images from ultrathin specimens. PLoS Comput Biol. doi:10.1371/journal.pcbi.1002671 Wang G, Smith SJ (2012) Sub-diffraction limit localization of proteins in volumetric space using bayesian restoration of fluorescence images from ultrathin specimens. PLoS Comput Biol. doi:10.​1371/​journal.​pcbi.​1002671
go back to reference Washburn MS, Moises HC (1992) Inhibitory responses of rat basolateral amygdaloid neurons recorded in vitro. Neuroscience 50:811–830CrossRefPubMed Washburn MS, Moises HC (1992) Inhibitory responses of rat basolateral amygdaloid neurons recorded in vitro. Neuroscience 50:811–830CrossRefPubMed
go back to reference Zhou FC, Xu Y, Bledsoe S, Lin R, Kelley MR (1996) Serotonin transporter antibodies: production, characterization, and localization in the brain. Brain Res Mol Brain Res 43(1–2):267–278CrossRefPubMed Zhou FC, Xu Y, Bledsoe S, Lin R, Kelley MR (1996) Serotonin transporter antibodies: production, characterization, and localization in the brain. Brain Res Mol Brain Res 43(1–2):267–278CrossRefPubMed
go back to reference Zhou W, Lee YM, Guy VC, Freed CR (2009) Embryonic stem cells with GFP knocked into the dopamine transporter yield purified dopamine neurons in vitro and from knock-in mice. Stem Cells 27:2952–2961. doi:10.1002/stem.216 CrossRefPubMed Zhou W, Lee YM, Guy VC, Freed CR (2009) Embryonic stem cells with GFP knocked into the dopamine transporter yield purified dopamine neurons in vitro and from knock-in mice. Stem Cells 27:2952–2961. doi:10.​1002/​stem.​216 CrossRefPubMed
Metadata
Title
Mapping the connectivity of serotonin transporter immunoreactive axons to excitatory and inhibitory neurochemical synapses in the mouse limbic brain
Authors
Arnauld Belmer
Paul M. Klenowski
Omkar L. Patkar
Selena E. Bartlett
Publication date
01-04-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1278-x

Other articles of this Issue 3/2017

Brain Structure and Function 3/2017 Go to the issue