Skip to main content
Top
Published in: Brain Structure and Function 1/2017

01-01-2017 | Original Article

Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear

Authors: Daniel Olaya-Sánchez, Luis Óscar Sánchez-Guardado, Sho Ohta, Susan C. Chapman, Gary C. Schoenwolf, Luis Puelles, Matías Hidalgo-Sánchez

Published in: Brain Structure and Function | Issue 1/2017

Login to get access

Abstract

The inner ear is a morphologically complex sensory structure with auditory and vestibular functions. The developing otic epithelium gives rise to neurosensory and non-sensory elements of the adult membranous labyrinth. Extrinsic and intrinsic signals manage the patterning and cell specification of the developing otic epithelium by establishing lineage-restricted compartments defined in turn by differential expression of regulatory genes. FGF3 and FGF16 are excellent candidates to govern these developmental events. Using the chick inner ear, we show that Fgf3 expression is present in the borders of all developing cristae. Strong Fgf16 expression was detected in a portion of the developing vertical and horizontal pouches, whereas the cristae show weaker or undetected Fgf16 expression at different developmental stages. Concerning the rest of the vestibular sensory elements, both the utricular and saccular maculae were Fgf3 positive. Interestingly, strong Fgf16 expression delimited these Fgf16-negative sensory patches. The Fgf3-negative macula neglecta and the Fgf3-positive macula lagena were included within weakly Fgf16-expressing areas. Therefore, different FGF-mediated mechanisms might regulate the specification of the anterior (utricular and saccular) and posterior (neglecta and lagena) maculae. In the developing cochlear duct, dynamic Fgf3 and Fgf16 expression suggests their cooperation in the early specification and later cell differentiation in the hearing system. The requirement of Fgf3 and Fgf16 genes in endolymphatic apparatus development and neurogenesis are discussed. Based on these observations, FGF3 and FGF16 seem to be key signaling pathways that control the inner ear plan by defining epithelial identities within the developing otic epithelium.
Literature
go back to reference Abelló G, Khatri S, Giráldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645PubMedCrossRef Abelló G, Khatri S, Giráldez F, Alsina B (2007) Early regionalization of the otic placode and its regulation by the Notch signaling pathway. Mech Dev 124:631–645PubMedCrossRef
go back to reference Abelló G, Khatri S, Radosevic M, Scotting PJ, Giráldez F, Alsina B (2010) Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol 339:166–178PubMedCrossRef Abelló G, Khatri S, Radosevic M, Scotting PJ, Giráldez F, Alsina B (2010) Independent regulation of Sox3 and Lmx1b by FGF and BMP signaling influences the neurogenic and non-neurogenic domains in the chick otic placode. Dev Biol 339:166–178PubMedCrossRef
go back to reference Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654PubMed Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654PubMed
go back to reference Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giráldez F (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134PubMedCrossRef Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giráldez F (2004) FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 267:119–134PubMedCrossRef
go back to reference Alsmadi O, Meyer BF, Alkuraya F, Wakil S, Alkayal F, Al-Saud H, Ramzan K, Al-Sayed M (2009) Syndromic congenital sensorineural deafness, microtia and microdontia resulting from a novel homoallelic mutation in fibroblast growth factor 3 (FGF3). Eur J Hum Genet 17:14–21PubMedCrossRef Alsmadi O, Meyer BF, Alkuraya F, Wakil S, Alkayal F, Al-Saud H, Ramzan K, Al-Sayed M (2009) Syndromic congenital sensorineural deafness, microtia and microdontia resulting from a novel homoallelic mutation in fibroblast growth factor 3 (FGF3). Eur J Hum Genet 17:14–21PubMedCrossRef
go back to reference Álvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bosl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T (2003) Requirements for FGF3 and FGF10 during inner ear formation. Development 130:6329–6338PubMedCrossRef Álvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bosl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T (2003) Requirements for FGF3 and FGF10 during inner ear formation. Development 130:6329–6338PubMedCrossRef
go back to reference Aragón F, Vazquez-Echeverría C, Ulloa E, Reber M, Cereghini S, Alsina B, Giráldez F, Pujades C (2005) vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 234:567–576PubMedCrossRef Aragón F, Vazquez-Echeverría C, Ulloa E, Reber M, Cereghini S, Alsina B, Giráldez F, Pujades C (2005) vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain. Dev Dyn 234:567–576PubMedCrossRef
go back to reference Arnold JS, Braunstein EM, Ohyama T, Groves AK, Adams JC, Brown MC, Morrow BE (2006) Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet 15:1629–1639PubMedPubMedCentralCrossRef Arnold JS, Braunstein EM, Ohyama T, Groves AK, Adams JC, Brown MC, Morrow BE (2006) Tissue-specific roles of Tbx1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet 15:1629–1639PubMedPubMedCentralCrossRef
go back to reference Bok J, Bronner-Fraser M, Wu DK (2005) Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development 132:2115–2124PubMedCrossRef Bok J, Bronner-Fraser M, Wu DK (2005) Role of the hindbrain in dorsoventral but not anteroposterior axial specification of the inner ear. Development 132:2115–2124PubMedCrossRef
go back to reference Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51:521–533PubMedCrossRef Bok J, Chang W, Wu DK (2007) Patterning and morphogenesis of the vertebrate inner ear. Int J Dev Biol 51:521–533PubMedCrossRef
go back to reference Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci USA 97:11700–11706PubMedPubMedCentralCrossRef Brigande JV, Kiernan AE, Gao X, Iten LE, Fekete DM (2000) Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role? Proc Natl Acad Sci USA 97:11700–11706PubMedPubMedCentralCrossRef
go back to reference Cadot S, Frenz D, Maconochie M (2012) A novel method for retinoic acid administration reveals differential and dose-dependent downregulation of Fgf3 in the developing inner ear and anterior CNS. Dev Dyn 241:741–58PubMedCrossRef Cadot S, Frenz D, Maconochie M (2012) A novel method for retinoic acid administration reveals differential and dose-dependent downregulation of Fgf3 in the developing inner ear and anterior CNS. Dev Dyn 241:741–58PubMedCrossRef
go back to reference Chang W, Brigande JV, Fekete DM, Wu DK (2004) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131:4201–4211PubMedCrossRef Chang W, Brigande JV, Fekete DM, Wu DK (2004) The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 131:4201–4211PubMedCrossRef
go back to reference Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12PubMedCrossRef Chen J, Streit A (2013) Induction of the inner ear: stepwise specification of otic fate from multipotent progenitors. Hear Res 297:3–12PubMedCrossRef
go back to reference Choo D, Ward J, Reece A, Dou H, Lin Z, Greinwald J (2006) Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Dev Biol 289:308–317PubMedCrossRef Choo D, Ward J, Reece A, Dou H, Lin Z, Greinwald J (2006) Molecular mechanisms underlying inner ear patterning defects in kreisler mutants. Dev Biol 289:308–317PubMedCrossRef
go back to reference Deol MS (1964) The abnormalities of the inner ear in Kreisler mice. J Embryol Exp Morphol 12:475–490PubMed Deol MS (1964) The abnormalities of the inner ear in Kreisler mice. J Embryol Exp Morphol 12:475–490PubMed
go back to reference Domínguez-Frutos E, Vendrell V, Álvarez Y, Zelarayan LC, Lopez-Hernández I, Ros M, Schimmang T (2009) Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 126:873–881PubMedCrossRef Domínguez-Frutos E, Vendrell V, Álvarez Y, Zelarayan LC, Lopez-Hernández I, Ros M, Schimmang T (2009) Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 126:873–881PubMedCrossRef
go back to reference Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42PubMedCrossRef Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42PubMedCrossRef
go back to reference Frenz DA, Liu W, Cvekl A, Xie Q, Wassef L, Quadro L, Niederreither K, Maconochie M, Shanske A (2010) Retinoid signaling in inner ear development: A “Goldilocks” phenomenon. Am J Med Genet 152A:2947–2961PubMedPubMedCentralCrossRef Frenz DA, Liu W, Cvekl A, Xie Q, Wassef L, Quadro L, Niederreither K, Maconochie M, Shanske A (2010) Retinoid signaling in inner ear development: A “Goldilocks” phenomenon. Am J Med Genet 152A:2947–2961PubMedPubMedCentralCrossRef
go back to reference Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK (2008) Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development 135:3415–3424PubMedCrossRef Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK (2008) Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development 135:3415–3424PubMedCrossRef
go back to reference Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15:63–79PubMedPubMedCentralCrossRef Fritzsch B, Pan N, Jahan I, Duncan JS, Kopecky BJ, Elliott KL, Kersigo J, Yang T (2013) Evolution and development of the tetrapod auditory system: an organ of Corti-centric perspective. Evol Dev 15:63–79PubMedPubMedCentralCrossRef
go back to reference Gregory-Evans CY, Moosajee M, Hodges MD, Mackay DS, Game L, Vargesson N, Bloch-Zupan A, Ruschendorf F, Santos-Pinto L, Wackens G, Gregory-Evans K (2007) SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet 16:2482–2493PubMedCrossRef Gregory-Evans CY, Moosajee M, Hodges MD, Mackay DS, Game L, Vargesson N, Bloch-Zupan A, Ruschendorf F, Santos-Pinto L, Wackens G, Gregory-Evans K (2007) SNP genome scanning localizes oto-dental syndrome to chromosome 11q13 and microdeletions at this locus implicate FGF3 in dental and inner-ear disease and FADD in ocular coloboma. Hum Mol Genet 16:2482–2493PubMedCrossRef
go back to reference Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedCrossRef Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92PubMedCrossRef
go back to reference Hammond KL, Whitfield TT (2011) Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development 138:3977–3987PubMedPubMedCentralCrossRef Hammond KL, Whitfield TT (2011) Fgf and Hh signalling act on a symmetrical pre-pattern to specify anterior and posterior identity in the zebrafish otic placode and vesicle. Development 138:3977–3987PubMedPubMedCentralCrossRef
go back to reference Hans S, Westerfield M (2007) Changes in retinoic acid signaling alter otic patterning. Development 134:2449–2458PubMedCrossRef Hans S, Westerfield M (2007) Changes in retinoic acid signaling alter otic patterning. Development 134:2449–2458PubMedCrossRef
go back to reference Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL (2007) Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development 134:3615–3625PubMedPubMedCentralCrossRef Hatch EP, Noyes CA, Wang X, Wright TJ, Mansour SL (2007) Fgf3 is required for dorsal patterning and morphogenesis of the inner ear epithelium. Development 134:3615–3625PubMedPubMedCentralCrossRef
go back to reference Hatch EP, Urness LD, Mansour SL (2009) Fgf16(IRESCre) mice: a tool to inactivate genes expressed in inner ear cristae and spiral prominence epithelium. Dev Dyn 238:358–366PubMedPubMedCentralCrossRef Hatch EP, Urness LD, Mansour SL (2009) Fgf16(IRESCre) mice: a tool to inactivate genes expressed in inner ear cristae and spiral prominence epithelium. Dev Dyn 238:358–366PubMedPubMedCentralCrossRef
go back to reference Hidalgo-Sánchez M, Alvarado-Mallart R, Álvarez IS (2000) Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development. Mech Dev 95:225–229PubMedCrossRef Hidalgo-Sánchez M, Alvarado-Mallart R, Álvarez IS (2000) Pax2, Otx2, Gbx2 and Fgf8 expression in early otic vesicle development. Mech Dev 95:225–229PubMedCrossRef
go back to reference Hill J, Clarke JD, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 50:3–16PubMedCrossRef Hill J, Clarke JD, Vargesson N, Jowett T, Holder N (1995) Exogenous retinoic acid causes specific alterations in the development of the midbrain and hindbrain of the zebrafish embryo including positional respecification of the Mauthner neuron. Mech Dev 50:3–16PubMedCrossRef
go back to reference Imamura T (2014) Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull 37:1081–1089PubMedCrossRef Imamura T (2014) Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull 37:1081–1089PubMedCrossRef
go back to reference Karabagli H, Karabagli P, Ladher RK, Schoenwolf GC (2002) Comparison of the expression patterns of several fibroblast growth factors during chick gastrulation and neurulation. Anat Embryol 205:365–370PubMedCrossRef Karabagli H, Karabagli P, Ladher RK, Schoenwolf GC (2002) Comparison of the expression patterns of several fibroblast growth factors during chick gastrulation and neurulation. Anat Embryol 205:365–370PubMedCrossRef
go back to reference Kil SH, Streit A, Brown ST, Agrawal N, Collazo A, Zile MH, Groves AK (2005) Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail. Dev Biol 285:252–271PubMedCrossRef Kil SH, Streit A, Brown ST, Agrawal N, Collazo A, Zile MH, Groves AK (2005) Distinct roles for hindbrain and paraxial mesoderm in the induction and patterning of the inner ear revealed by a study of vitamin-A-deficient quail. Dev Biol 285:252–271PubMedCrossRef
go back to reference Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK (2009) Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol 333:14–25PubMedPubMedCentralCrossRef Koo SK, Hill JK, Hwang CH, Lin ZS, Millen KJ, Wu DK (2009) Lmx1a maintains proper neurogenic, sensory, and non-sensory domains in the mammalian inner ear. Dev Biol 333:14–25PubMedPubMedCentralCrossRef
go back to reference Kwak SJ, Phillips BT, Heck R, Riley BB (2002) An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development 129:5279–5287PubMed Kwak SJ, Phillips BT, Heck R, Riley BB (2002) An expanded domain of fgf3 expression in the hindbrain of zebrafish valentino mutants results in mis-patterning of the otic vesicle. Development 129:5279–5287PubMed
go back to reference Ladher RK, O’Neill P, Begbie J (2010) From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 137:1777–1785PubMedCrossRef Ladher RK, O’Neill P, Begbie J (2010) From shared lineage to distinct functions: the development of the inner ear and epibranchial placodes. Development 137:1777–1785PubMedCrossRef
go back to reference Leger S, Brand M (2002) Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mech Dev 119:91–108PubMedCrossRef Leger S, Brand M (2002) Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mech Dev 119:91–108PubMedCrossRef
go back to reference Lillevali K, Haugas M, Matilainen T, Pussinen C, Karis A, Salminen M (2006) Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 123:415–429PubMedCrossRef Lillevali K, Haugas M, Matilainen T, Pussinen C, Karis A, Salminen M (2006) Gata3 is required for early morphogenesis and Fgf10 expression during otic development. Mech Dev 123:415–429PubMedCrossRef
go back to reference Lin Z, Cantos R, Patente M, Wu DK (2005) Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling. Development 132:2309–2318PubMedCrossRef Lin Z, Cantos R, Patente M, Wu DK (2005) Gbx2 is required for the morphogenesis of the mouse inner ear: a downstream candidate of hindbrain signaling. Development 132:2309–2318PubMedCrossRef
go back to reference Liu W, Levi G, Shanske A, Frenz DA (2008) Retinoic acid-induced inner ear teratogenesis caused by defective Fgf3/Fgf10-dependent Dlx5 signaling. Birth Defects Res B Dev Reprod Toxicol 83:134–144PubMedCrossRef Liu W, Levi G, Shanske A, Frenz DA (2008) Retinoic acid-induced inner ear teratogenesis caused by defective Fgf3/Fgf10-dependent Dlx5 signaling. Birth Defects Res B Dev Reprod Toxicol 83:134–144PubMedCrossRef
go back to reference Lombardo A, Isaacs HV, Slack JM (1998) Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 42:1101–1107PubMed Lombardo A, Isaacs HV, Slack JM (1998) Expression and functions of FGF-3 in Xenopus development. Int J Dev Biol 42:1101–1107PubMed
go back to reference Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119PubMedCrossRef Lufkin T, Dierich A, LeMeur M, Mark M, Chambon P (1991) Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119PubMedCrossRef
go back to reference Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121:1399–1410PubMed Mahmood R, Kiefer P, Guthrie S, Dickson C, Mason I (1995) Multiple roles for FGF-3 during cranial neural development in the chicken. Development 121:1399–1410PubMed
go back to reference Mahmood R, Mason IJ, Morriss-Kay GM (1996) Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol 194:13–22PubMedCrossRef Mahmood R, Mason IJ, Morriss-Kay GM (1996) Expression of Fgf-3 in relation to hindbrain segmentation, otic pit position and pharyngeal arch morphology in normal and retinoic acid-exposed mouse embryos. Anat Embryol 194:13–22PubMedCrossRef
go back to reference Mansour SL (1994) Targeted disruption of int-2 (fgf-3) causes developmental defects in the tail and inner ear. Mol Reprod Dev 39:62–67PubMedCrossRef Mansour SL (1994) Targeted disruption of int-2 (fgf-3) causes developmental defects in the tail and inner ear. Mol Reprod Dev 39:62–67PubMedCrossRef
go back to reference Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28PubMed Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28PubMed
go back to reference Maroon H, Walshe J, Mahmood R, Kiefer P, Dickson C, Mason I (2002) Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 129:2099–2108PubMed Maroon H, Walshe J, Mahmood R, Kiefer P, Dickson C, Mason I (2002) Fgf3 and Fgf8 are required together for formation of the otic placode and vesicle. Development 129:2099–2108PubMed
go back to reference Maves L, Jackman W, Kimmel CB (2002) FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129:3825–3837PubMed Maves L, Jackman W, Kimmel CB (2002) FGF3 and FGF8 mediate a rhombomere 4 signaling activity in the zebrafish hindbrain. Development 129:3825–3837PubMed
go back to reference McCarroll MN, Lewis ZR, Culbertson MD, Martin B, Kimelman D, Nechiporuk AV (2012) Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development 139:2740–2750PubMedPubMedCentralCrossRef McCarroll MN, Lewis ZR, Culbertson MD, Martin B, Kimelman D, Nechiporuk AV (2012) Graded levels of Pax2a and Pax8 regulate cell differentiation during sensory placode formation. Development 139:2740–2750PubMedPubMedCentralCrossRef
go back to reference McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174:370–378PubMedCrossRef McKay IJ, Lewis J, Lumsden A (1996) The role of FGF-3 in early inner ear development: an analysis in normal and kreisler mutant mice. Dev Biol 174:370–378PubMedCrossRef
go back to reference Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134:295–305PubMedCrossRef Millimaki BB, Sweet EM, Dhason MS, Riley BB (2007) Zebrafish atoh1 genes: classic proneural activity in the inner ear and regulation by Fgf and Notch. Development 134:295–305PubMedCrossRef
go back to reference Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335PubMed Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335PubMed
go back to reference Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C (2001) SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res 29:3347–3355PubMedPubMedCentralCrossRef Murakami A, Ishida S, Thurlow J, Revest JM, Dickson C (2001) SOX6 binds CtBP2 to repress transcription from the Fgf-3 promoter. Nucleic Acids Res 29:3347–3355PubMedPubMedCentralCrossRef
go back to reference Murakami A, Shen H, Ishida S, Dickson C (2004) SOX7 and GATA-4 are competitive activators of Fgf-3 transcription. J Biol Chem 279:28564–28573PubMedCrossRef Murakami A, Shen H, Ishida S, Dickson C (2004) SOX7 and GATA-4 are competitive activators of Fgf-3 transcription. J Biol Chem 279:28564–28573PubMedCrossRef
go back to reference Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320:1774–1777PubMedCrossRef Nechiporuk A, Raible DW (2008) FGF-dependent mechanosensory organ patterning in zebrafish. Science 320:1774–1777PubMedCrossRef
go back to reference Nomura R, Kamei E, Hotta Y, Konishi M, Miyake A, Itoh N (2006) Fgf16 is essential for pectoral fin bud formation in zebrafish. Biochem Biophys Res Commun 347:340–346PubMedCrossRef Nomura R, Kamei E, Hotta Y, Konishi M, Miyake A, Itoh N (2006) Fgf16 is essential for pectoral fin bud formation in zebrafish. Biochem Biophys Res Commun 347:340–346PubMedCrossRef
go back to reference Oh SH, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 16:6463–6475PubMed Oh SH, Johnson R, Wu DK (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs. J Neurosci 16:6463–6475PubMed
go back to reference Ohuchi H, Yasue A, Ono K, Sasaoka S, Tomonari S, Takagi A, Itakura M, Noji S, Moriyama K, Nohno T (2005) Identification of cis-element regulating expression of the mouse Fgf10 gene during inner ear development. Dev Dyn 233:177–187PubMedCrossRef Ohuchi H, Yasue A, Ono K, Sasaoka S, Tomonari S, Takagi A, Itakura M, Noji S, Moriyama K, Nohno T (2005) Identification of cis-element regulating expression of the mouse Fgf10 gene during inner ear development. Dev Dyn 233:177–187PubMedCrossRef
go back to reference Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472PubMedCrossRef Ohyama T, Groves AK, Martin K (2007) The first steps towards hearing: mechanisms of otic placode induction. Int J Dev Biol 51:463–472PubMedCrossRef
go back to reference Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura HO, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131:551–562PubMedCrossRef Ozaki H, Nakamura K, Funahashi J, Ikeda K, Yamada G, Tokano H, Okamura HO, Kitamura K, Muto S, Kotaki H, Sudo K, Horai R, Iwakura Y, Kawakami K (2004) Six1 controls patterning of the mouse otic vesicle. Development 131:551–562PubMedCrossRef
go back to reference Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215PubMedPubMedCentralCrossRef Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215PubMedPubMedCentralCrossRef
go back to reference Paxton CN, Bleyl SB, ChapmanSC Schoenwolf GC (2010) Identification of differentially expressed genes in early inner ear development. Gene Expr Patterns 10:31–43PubMedCrossRef Paxton CN, Bleyl SB, ChapmanSC Schoenwolf GC (2010) Identification of differentially expressed genes in early inner ear development. Gene Expr Patterns 10:31–43PubMedCrossRef
go back to reference Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728PubMed Perez SE, Rebelo S, Anderson DJ (1999) Early specification of sensory neuron fate revealed by expression and function of neurogenins in the chick embryo. Development 126:1715–1728PubMed
go back to reference Phillips BT, Bolding K, Riley BB (2001) Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 235:351–365PubMedCrossRef Phillips BT, Bolding K, Riley BB (2001) Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 235:351–365PubMedCrossRef
go back to reference Pickles JO (2001) The expression of ¢broblast growth factors and their receptors in the embryonic and neonatal mouse inner ear. Hear Res 155:54–62PubMedCrossRef Pickles JO (2001) The expression of ¢broblast growth factors and their receptors in the embryonic and neonatal mouse inner ear. Hear Res 155:54–62PubMedCrossRef
go back to reference Pickles JO, Chir B (2002) Roles of fibroblast growth factors in the inner ear. Audiol Neurootol 7:36–39PubMedCrossRef Pickles JO, Chir B (2002) Roles of fibroblast growth factors in the inner ear. Audiol Neurootol 7:36–39PubMedCrossRef
go back to reference Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J (2000) FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J Neurosci 20:6125–6134PubMed Pirvola U, Spencer-Dene B, Xing-Qun L, Kettunen P, Thesleff I, Fritzsch B, Dickson C, Ylikoski J (2000) FGF/FGFR-2(IIIb) signaling is essential for inner ear morphogenesis. J Neurosci 20:6125–6134PubMed
go back to reference Powles N, Marshall H, Economou A, Chiang C, Murakami A, Dickson C, Krumlauf R, Maconochie M (2004) Regulatory analysis of the mouse Fgf3 gene: control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling. Dev Dyn 230:44–56PubMedCrossRef Powles N, Marshall H, Economou A, Chiang C, Murakami A, Dickson C, Krumlauf R, Maconochie M (2004) Regulatory analysis of the mouse Fgf3 gene: control of embryonic expression patterns and dependence upon sonic hedgehog (Shh) signalling. Dev Dyn 230:44–56PubMedCrossRef
go back to reference Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812PubMedCrossRef Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812PubMedCrossRef
go back to reference Riazuddin S, Ahmed ZM, Hegde RS, Khan SN, Nasir I, Shaukat U, Butman JA, Griffith AJ, Friedman TB, Choi BY (2011) Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome. BMC Med Genet 12:21PubMedPubMedCentralCrossRef Riazuddin S, Ahmed ZM, Hegde RS, Khan SN, Nasir I, Shaukat U, Butman JA, Griffith AJ, Friedman TB, Choi BY (2011) Variable expressivity of FGF3 mutations associated with deafness and LAMM syndrome. BMC Med Genet 12:21PubMedPubMedCentralCrossRef
go back to reference Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378PubMedPubMedCentralCrossRef Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378PubMedPubMedCentralCrossRef
go back to reference Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:1612–1623PubMedPubMedCentralCrossRef Riccomagno MM, Takada S, Epstein DJ (2005) Wnt-dependent regulation of inner ear morphogenesis is balanced by the opposing and supporting roles of Shh. Genes Dev 19:1612–1623PubMedPubMedCentralCrossRef
go back to reference Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2002) Differential expression of Otx2, Gbx2, Pax2, and Fgf8 in the developing vestibular and auditory sensory organs. Brain Res Bull 57:321–332PubMedCrossRef Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2002) Differential expression of Otx2, Gbx2, Pax2, and Fgf8 in the developing vestibular and auditory sensory organs. Brain Res Bull 57:321–332PubMedCrossRef
go back to reference Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2004) Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns 4:659–669PubMedCrossRef Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2004) Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns 4:659–669PubMedCrossRef
go back to reference Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2005) Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 5:763–773PubMedCrossRef Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M (2005) Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 5:763–773PubMedCrossRef
go back to reference Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M (2007a) Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 7:30–38PubMedCrossRef Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M (2007a) Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 7:30–38PubMedCrossRef
go back to reference Sánchez-Calderón H, Milo M, León Y, Varela-Nieto I (2007b) A network of growth and transcription factors controls neuronal differentiation and survival in the developing ear. Int J Dev Biol 51:557–570PubMedCrossRef Sánchez-Calderón H, Milo M, León Y, Varela-Nieto I (2007b) A network of growth and transcription factors controls neuronal differentiation and survival in the developing ear. Int J Dev Biol 51:557–570PubMedCrossRef
go back to reference Sánchez-Guardado LO, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M (2009) Raldh3 gene expression pattern in the developing chicken inner ear. J Comp Neurol 514:49–65PubMedCrossRef Sánchez-Guardado LO, Ferran JL, Mijares J, Puelles L, Rodríguez-Gallardo L, Hidalgo-Sánchez M (2009) Raldh3 gene expression pattern in the developing chicken inner ear. J Comp Neurol 514:49–65PubMedCrossRef
go back to reference Sánchez-Guardado LO, Ferran JL, Rodríguez-Gallardo L, Puelles L, Hidalgo-Sánchez M (2011) Meis gene expression patterns in the developing chicken inner ear. J Comp Neurol 519:125–147PubMedCrossRef Sánchez-Guardado LO, Ferran JL, Rodríguez-Gallardo L, Puelles L, Hidalgo-Sánchez M (2011) Meis gene expression patterns in the developing chicken inner ear. J Comp Neurol 519:125–147PubMedCrossRef
go back to reference Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2013) Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 521:1136–1164PubMedCrossRef Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2013) Fgf10 expression patterns in the developing chick inner ear. J Comp Neurol 521:1136–1164PubMedCrossRef
go back to reference Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2014) Fate map of the chicken otic placode. Development 141:2302–2312PubMedCrossRef Sánchez-Guardado LO, Puelles L, Hidalgo-Sánchez M (2014) Fate map of the chicken otic placode. Development 141:2302–2312PubMedCrossRef
go back to reference Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51:473–481PubMedCrossRef Schimmang T (2007) Expression and functions of FGF ligands during early otic development. Int J Dev Biol 51:473–481PubMedCrossRef
go back to reference Sienknecht UJ, Fekete DM (2009) Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 517:751–764PubMedPubMedCentralCrossRef Sienknecht UJ, Fekete DM (2009) Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium. J Comp Neurol 517:751–764PubMedPubMedCentralCrossRef
go back to reference Sinkkonen ST, Starlinger V, Galaiya DJ, Laske RD, Myllykangas S, Oshima K, Heller S (2011) Serial analysis of gene expression in the chicken otocyst. J Assoc Res Otolaryngol 12:697–710PubMedPubMedCentralCrossRef Sinkkonen ST, Starlinger V, Galaiya DJ, Laske RD, Myllykangas S, Oshima K, Heller S (2011) Serial analysis of gene expression in the chicken otocyst. J Assoc Res Otolaryngol 12:697–710PubMedPubMedCentralCrossRef
go back to reference Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM (2003) Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261:149–164PubMedCrossRef Stevens CB, Davies AL, Battista S, Lewis JH, Fekete DM (2003) Forced activation of Wnt signaling alters morphogenesis and sensory organ identity in the chicken inner ear. Dev Biol 261:149–164PubMedCrossRef
go back to reference Storey KG, Crossley JM, De Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114:729–741PubMed Storey KG, Crossley JM, De Robertis EM, Norris WE, Stern CD (1992) Neural induction and regionalisation in the chick embryo. Development 114:729–741PubMed
go back to reference Sweet EM, Vemaraju S, Riley BB (2011) Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear. Dev Biol 358:113–121PubMedPubMedCentralCrossRef Sweet EM, Vemaraju S, Riley BB (2011) Sox2 and Fgf interact with Atoh1 to promote sensory competence throughout the zebrafish inner ear. Dev Biol 358:113–121PubMedPubMedCentralCrossRef
go back to reference Tekin M, Hismi BO, Fitoz S, Ozdag H, Cengiz FB, Sirmaci A, Aslan I, Inceoglu B, Yuksel-Konuk EB, Yilmaz ST, Yasun O, Akar N (2007) Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am J Hum Genet 80:338–344PubMedCrossRef Tekin M, Hismi BO, Fitoz S, Ozdag H, Cengiz FB, Sirmaci A, Aslan I, Inceoglu B, Yuksel-Konuk EB, Yilmaz ST, Yasun O, Akar N (2007) Homozygous mutations in fibroblast growth factor 3 are associated with a new form of syndromic deafness characterized by inner ear agenesis, microtia, and microdontia. Am J Hum Genet 80:338–344PubMedCrossRef
go back to reference Tekin M, Ozturkmen Akay H, Fitoz S, Birnbaum S, Cengiz FB, Sennaroglu L, Incesulu A, Yuksel Konuk EB, Hasanefendioglu Bayrak A, Senturk S, Cebeci I, Utine GE, Tunçbilek E, Nance WE, Duman D (2008) Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia. Clin Genet 73:554–565PubMedCrossRef Tekin M, Ozturkmen Akay H, Fitoz S, Birnbaum S, Cengiz FB, Sennaroglu L, Incesulu A, Yuksel Konuk EB, Hasanefendioglu Bayrak A, Senturk S, Cebeci I, Utine GE, Tunçbilek E, Nance WE, Duman D (2008) Homozygous FGF3 mutations result in congenital deafness with inner ear agenesis, microtia, and microdontia. Clin Genet 73:554–565PubMedCrossRef
go back to reference Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604PubMedPubMedCentralCrossRef Urness LD, Paxton CN, Wang X, Schoenwolf GC, Mansour SL (2010) FGF signaling regulates otic placode induction and refinement by controlling both ectodermal target genes and hindbrain Wnt8a. Dev Biol 340:595–604PubMedPubMedCentralCrossRef
go back to reference Vazquez-Echeverría C, Domínguez-Frutos E, Charnay P, Schimmang T, Pujades C (2008) Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 322:167–178PubMedCrossRef Vazquez-Echeverría C, Domínguez-Frutos E, Charnay P, Schimmang T, Pujades C (2008) Analysis of mouse kreisler mutants reveals new roles of hindbrain-derived signals in the establishment of the otic neurogenic domain. Dev Biol 322:167–178PubMedCrossRef
go back to reference Vendrell V, Carnicero E, Giráldez F, Alonso MT, Schimmang T (2000) Induction of inner ear fate by FGF3. Development 127:2011–2029PubMed Vendrell V, Carnicero E, Giráldez F, Alonso MT, Schimmang T (2000) Induction of inner ear fate by FGF3. Development 127:2011–2029PubMed
go back to reference Vendrell V, Vazquez-Echeverría C, López-Hernández I, Alonso BD, Martínez S, Pujades C, Schimmang T (2013) Roles of Wnt8a during formation and patterning of the mouse inner ear. Mech Dev 130:160–168PubMedCrossRef Vendrell V, Vazquez-Echeverría C, López-Hernández I, Alonso BD, Martínez S, Pujades C, Schimmang T (2013) Roles of Wnt8a during formation and patterning of the mouse inner ear. Mech Dev 130:160–168PubMedCrossRef
go back to reference Walshe J, Mason I (2003) Fgf signalling is required for formation of cartilage in the head. Dev Biol 264:522–536PubMedCrossRef Walshe J, Mason I (2003) Fgf signalling is required for formation of cartilage in the head. Dev Biol 264:522–536PubMedCrossRef
go back to reference Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 12:1117–1123PubMedCrossRef Walshe J, Maroon H, McGonnell IM, Dickson C, Mason I (2002) Establishment of hindbrain segmental identity requires signaling by FGF3 and FGF8. Curr Biol 12:1117–1123PubMedCrossRef
go back to reference Whitfield TT, Hammond KL (2007) Axial patterning in the developing vertebrate inner ear. Int J Dev Biol 51:507–520PubMedCrossRef Whitfield TT, Hammond KL (2007) Axial patterning in the developing vertebrate inner ear. Int J Dev Biol 51:507–520PubMedCrossRef
go back to reference Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105:131–136PubMed Wilkinson DG, Bhatt S, McMahon AP (1989) Expression pattern of the FGF-related proto-oncogene int-2 suggests multiple roles in fetal development. Development 105:131–136PubMed
go back to reference Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390PubMedCrossRef Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390PubMedCrossRef
go back to reference Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462PubMed Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 16:6454–6462PubMed
go back to reference Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64:635–647PubMedCrossRef Yamada T, Placzek M, Tanaka H, Dodd J, Jessell TM (1991) Control of cell pattern in the developing nervous system: polarizing activity of the floor plate and notochord. Cell 64:635–647PubMedCrossRef
go back to reference Zelarayan LC, Vendrell V, Alvarez Y, Dominguez-Frutos E, Theil T, Alonso MT, Maconochie M, Schimmang T (2007) Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Dev Biol 308:379–391PubMedCrossRef Zelarayan LC, Vendrell V, Alvarez Y, Dominguez-Frutos E, Theil T, Alonso MT, Maconochie M, Schimmang T (2007) Differential requirements for FGF3, FGF8 and FGF10 during inner ear development. Dev Biol 308:379–391PubMedCrossRef
go back to reference Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281:15694–15700PubMedPubMedCentralCrossRef Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281:15694–15700PubMedPubMedCentralCrossRef
Metadata
Title
Fgf3 and Fgf16 expression patterns define spatial and temporal domains in the developing chick inner ear
Authors
Daniel Olaya-Sánchez
Luis Óscar Sánchez-Guardado
Sho Ohta
Susan C. Chapman
Gary C. Schoenwolf
Luis Puelles
Matías Hidalgo-Sánchez
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 1/2017
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-016-1205-1

Other articles of this Issue 1/2017

Brain Structure and Function 1/2017 Go to the issue