Skip to main content
Top
Published in: Brain Structure and Function 5/2016

01-06-2016 | Original Article

A unique cellular scaling rule in the avian auditory system

Authors: Jeremy R. Corfield, Brendan Long, Justin M. Krilow, Douglas R. Wylie, Andrew N. Iwaniuk

Published in: Brain Structure and Function | Issue 5/2016

Login to get access

Abstract

Although it is clear that neural structures scale with body size, the mechanisms of this relationship are not well understood. Several recent studies have shown that the relationship between neuron numbers and brain (or brain region) size are not only different across mammalian orders, but also across auditory and visual regions within the same brains. Among birds, similar cellular scaling rules have not been examined in any detail. Here, we examine the scaling of auditory structures in birds and show that the scaling rules that have been established in the mammalian auditory pathway do not necessarily apply to birds. In galliforms, neuronal densities decrease with increasing brain size, suggesting that auditory brainstem structures increase in size faster than neurons are added; smaller brains have relatively more neurons than larger brains. The cellular scaling rules that apply to auditory brainstem structures in galliforms are, therefore, different to that found in primate auditory pathway. It is likely that the factors driving this difference are associated with the anatomical specializations required for sound perception in birds, although there is a decoupling of neuron numbers in brain structures and hair cell numbers in the basilar papilla. This study provides significant insight into the allometric scaling of neural structures in birds and improves our understanding of the rules that govern neural scaling across vertebrates.
Literature
go back to reference Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond B 265:1933–1937CrossRef Barton RA (1998) Visual specialization and brain evolution in primates. Proc R Soc Lond B 265:1933–1937CrossRef
go back to reference Cajal SR (1908) Les ganlions terminaux du nerf acoustique des oiseaux. Trab Inst Cajal Invest Biol 6:195–225 Cajal SR (1908) Les ganlions terminaux du nerf acoustique des oiseaux. Trab Inst Cajal Invest Biol 6:195–225
go back to reference Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355PubMedCrossRef Carr CE, Boudreau RE (1993) Organization of the nucleus magnocellularis and the nucleus laminaris in the barn owl: encoding and measuring interaural time differences. J Comp Neurol 334:337–355PubMedCrossRef
go back to reference Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246PubMed Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246PubMed
go back to reference Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311PubMedCrossRef Carr CE, Soares D (2002) Evolutionary convergence and shared computational principles in the auditory system. Brain Behav Evol 59:294–311PubMedCrossRef
go back to reference Chalfin BP, Cheung DT, Muniz JAPC, de Lima Silveira LC, Finlay BL (2007) Scaling of neuron number and volume of the pulvinar complex in New World primates: comparisons with humans, other primates, and mammals. J Comp Neurol 504:265–274PubMedCrossRef Chalfin BP, Cheung DT, Muniz JAPC, de Lima Silveira LC, Finlay BL (2007) Scaling of neuron number and volume of the pulvinar complex in New World primates: comparisons with humans, other primates, and mammals. J Comp Neurol 504:265–274PubMedCrossRef
go back to reference Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274PubMedCrossRef Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274PubMedCrossRef
go back to reference Cobb S (1964) A comparison of the size of an auditory nucleus (n. mesensephalicus lateralis, pars dorsalis) with the size of the optic lobe in twenty seven species of birds. J Comp Neurol 122:271–279PubMedCrossRef Cobb S (1964) A comparison of the size of an auditory nucleus (n. mesensephalicus lateralis, pars dorsalis) with the size of the optic lobe in twenty seven species of birds. J Comp Neurol 122:271–279PubMedCrossRef
go back to reference Cohen YE, Miller GL, Knudsen EI (1998) Forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 79:891–902PubMed Cohen YE, Miller GL, Knudsen EI (1998) Forebrain pathway for auditory space processing in the barn owl. J Neurophysiol 79:891–902PubMed
go back to reference Collins CE, Leitch DB, Wong P, Kaas JH, Herculano-Houzel S (2013) Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains. Brain Struct Funct 218:805–816PubMedPubMedCentralCrossRef Collins CE, Leitch DB, Wong P, Kaas JH, Herculano-Houzel S (2013) Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains. Brain Struct Funct 218:805–816PubMedPubMedCentralCrossRef
go back to reference Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367:96–113PubMedCrossRef Conlee JW, Parks TN (1986) Origin of ascending auditory projections to the nucleus mesencephalicus lateralis pars dorsalis in the chicken. Brain Res 367:96–113PubMedCrossRef
go back to reference Corfield JR, Kubke MF, Parsons S, Koppl C (2012a) Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization. J Assoc Res Otolaryngol 13:629–639PubMedPubMedCentralCrossRef Corfield JR, Kubke MF, Parsons S, Koppl C (2012a) Inner-ear morphology of the New Zealand kiwi (Apteryx mantelli) suggests high-frequency specialization. J Assoc Res Otolaryngol 13:629–639PubMedPubMedCentralCrossRef
go back to reference Corfield JR, Wild JM, Parsons S, Kubke MF (2012b) Morphometric analysis of telencephalic structure in a variety of Neognath and Paleognath bird species reveals regional differences associated with specific behavioral traits. Brain Behav Evol 80:181–195PubMedCrossRef Corfield JR, Wild JM, Parsons S, Kubke MF (2012b) Morphometric analysis of telencephalic structure in a variety of Neognath and Paleognath bird species reveals regional differences associated with specific behavioral traits. Brain Behav Evol 80:181–195PubMedCrossRef
go back to reference Corfield JR, Krilow JM, Vande Ligt MN, Iwaniuk AN (2013a) A quantitative morphological analysis of the inner ear of galliform birds. Hear Res 304:111–127PubMedCrossRef Corfield JR, Krilow JM, Vande Ligt MN, Iwaniuk AN (2013a) A quantitative morphological analysis of the inner ear of galliform birds. Hear Res 304:111–127PubMedCrossRef
go back to reference Corfield JR, Kubke MF, Köppl C (2013b) Emu and kiwi: the ear and hearing in Paleognathous birds. In: Manley GA, Köppl C, Popper A, Fay RR (eds) Insights from comparative hearing research. Springer handbook in auditory research. Springer, New York Corfield JR, Kubke MF, Köppl C (2013b) Emu and kiwi: the ear and hearing in Paleognathous birds. In: Manley GA, Köppl C, Popper A, Fay RR (eds) Insights from comparative hearing research. Springer handbook in auditory research. Springer, New York
go back to reference Craigie EH (1930) Studies on the brain of the kiwi (Apteryx australis). J Comp Neurol 49:223–357CrossRef Craigie EH (1930) Studies on the brain of the kiwi (Apteryx australis). J Comp Neurol 49:223–357CrossRef
go back to reference de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714PubMedCrossRef de Winter W, Oxnard CE (2001) Evolutionary radiations and convergences in the structural organization of mammalian brains. Nature 409:710–714PubMedCrossRef
go back to reference Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Popper A, Fay R (eds) Comparative hearing: birds and mammals. Springer handbook of auditory research. Springer, New York, pp 308–359 Dooling RJ, Lohr B, Dent ML (2000) Hearing in birds and reptiles. In: Dooling RJ, Popper A, Fay R (eds) Comparative hearing: birds and mammals. Springer handbook of auditory research. Springer, New York, pp 308–359
go back to reference Dunning JB (2007) CRC handbook of avian body masses, 2nd edn. CRC Press, Boca RatonCrossRef Dunning JB (2007) CRC handbook of avian body masses, 2nd edn. CRC Press, Boca RatonCrossRef
go back to reference Durand SE, Tepper JM, Cheng M-F (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518PubMedCrossRef Durand SE, Tepper JM, Cheng M-F (1992) The shell region of the nucleus ovoidalis: a subdivision of the avian auditory thalamus. J Comp Neurol 323:495–518PubMedCrossRef
go back to reference Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol 182:695–702CrossRef Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol 182:695–702CrossRef
go back to reference Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138PubMedCrossRef Elston GN (2003) Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138PubMedCrossRef
go back to reference Finlay BK, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584PubMedCrossRef Finlay BK, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584PubMedCrossRef
go back to reference Frahm HD, Rehkamper G (1998) Volumetric comparison of auditory brain nuclei in ear-tufted Araucanas with those in other chicken breeds. J Hirnforsch 39:37–44PubMed Frahm HD, Rehkamper G (1998) Volumetric comparison of auditory brain nuclei in ear-tufted Araucanas with those in other chicken breeds. J Hirnforsch 39:37–44PubMed
go back to reference Funabiki K, Koyano K, Ohmori H (1998) The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J Physiol 508:851–869PubMedPubMedCentralCrossRef Funabiki K, Koyano K, Ohmori H (1998) The role of GABAergic inputs for coincidence detection in the neurones of nucleus laminaris of the chick. J Physiol 508:851–869PubMedPubMedCentralCrossRef
go back to reference Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. In: Dooling RJ, Fay R, Popper A (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 70–138CrossRef Gleich O, Manley GA (2000) The hearing organ of birds and crocodilia. In: Dooling RJ, Fay R, Popper A (eds) Comparative hearing: birds and reptiles. Springer, New York, pp 70–138CrossRef
go back to reference Gleich O, Fischer FP, Köppl C, Manley GA (2004) Hearing organ evolution and specialization: Archosaurs. In: Manley GA, Popper A, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 224–255CrossRef Gleich O, Fischer FP, Köppl C, Manley GA (2004) Hearing organ evolution and specialization: Archosaurs. In: Manley GA, Popper A, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 224–255CrossRef
go back to reference Gleich O, Dooling RJ, Manley GA (2005) Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenschaften 92:595–598PubMedCrossRef Gleich O, Dooling RJ, Manley GA (2005) Audiogram, body mass, and basilar papilla length: correlations in birds and predictions for extinct archosaurs. Naturwissenschaften 92:595–598PubMedCrossRef
go back to reference Gullion GW (1965) Improvements in the methods for trapping and marking ruffed grouse. J Wild Manag 29:109–116CrossRef Gullion GW (1965) Improvements in the methods for trapping and marking ruffed grouse. J Wild Manag 29:109–116CrossRef
go back to reference Gundersen HJG, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211PubMedCrossRef Gundersen HJG, Jensen EBV, Kieu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microsc 193:199–211PubMedCrossRef
go back to reference Gutierrez-Ibanez C, Iwaniuk AN, Wylie DR (2011) Relative size of auditory pathways in symmetrically and asymmetrically eared owls. Brain Behav Evol 78:286–301PubMedCrossRef Gutierrez-Ibanez C, Iwaniuk AN, Wylie DR (2011) Relative size of auditory pathways in symmetrically and asymmetrically eared owls. Brain Behav Evol 78:286–301PubMedCrossRef
go back to reference Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRef Hackett SJ, Kimball RT, Reddy S, Bowie RC, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han KL, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768PubMedCrossRef
go back to reference Hausler UH, Sullivan WE, Soares D, Carr CE (1999) A morphological study of the cochlear nuclei of the pigeon (Columba livia). Brain Behav Evol 54:290–302PubMedCrossRef Hausler UH, Sullivan WE, Soares D, Carr CE (1999) A morphological study of the cochlear nuclei of the pigeon (Columba livia). Brain Behav Evol 54:290–302PubMedCrossRef
go back to reference Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521PubMedCrossRef Herculano-Houzel S, Lent R (2005) Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. J Neurosci 25:2518–2521PubMedCrossRef
go back to reference Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfirio J, Messeder D, Feijo LM, Maldonado J, Manger PR (2014a) The elephant brain in numbers. Front Neuroanat. doi:10.3389/Fnana.2014.00046 Herculano-Houzel S, Avelino-de-Souza K, Neves K, Porfirio J, Messeder D, Feijo LM, Maldonado J, Manger PR (2014a) The elephant brain in numbers. Front Neuroanat. doi:10.​3389/​Fnana.​2014.​00046
go back to reference Herculano-Houzel S, Manger PR, Kaas JH (2014b) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat. doi:10.3389/Fnana.2014.00077 Herculano-Houzel S, Manger PR, Kaas JH (2014b) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat. doi:10.​3389/​Fnana.​2014.​00077
go back to reference Hotta T (1971) Unit responses from the nucleus angularis in the pigeon’s medulla. Comp Biochem Physiol 40A:415–424CrossRef Hotta T (1971) Unit responses from the nucleus angularis in the pigeon’s medulla. Comp Biochem Physiol 40A:415–424CrossRef
go back to reference Howard CV, Reed MG (2005) Unbiased stereology. Three-dimensional measurement in microscopy. Springer, New York Howard CV, Reed MG (2005) Unbiased stereology. Three-dimensional measurement in microscopy. Springer, New York
go back to reference Husband S, Shimizu T (2001) Evolution of the avian visual system. In: Cook RG (ed) Avian visual cognition. Tufts University, Medford Husband S, Shimizu T (2001) Evolution of the avian visual system. In: Cook RG (ed) Avian visual cognition. Tufts University, Medford
go back to reference Hyson RL, Overholt EM, Rubel EW (1989) Spatial summation for coding interaural time disparities in nucleus laminaris of the chick. J Comp Neurol 12:34–35 Hyson RL, Overholt EM, Rubel EW (1989) Spatial summation for coding interaural time disparities in nucleus laminaris of the chick. J Comp Neurol 12:34–35
go back to reference Iwaniuk AN, Clayton DH, Wylie DRW (2006) Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd). Behav Brain Res 167:305–317PubMedCrossRef Iwaniuk AN, Clayton DH, Wylie DRW (2006) Echolocation, vocal learning, auditory localization and the relative size of the avian auditory midbrain nucleus (MLd). Behav Brain Res 167:305–317PubMedCrossRef
go back to reference Iwaniuk AN, Heesy CP, Hall MI, Wylie DR (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A 194:267–282CrossRef Iwaniuk AN, Heesy CP, Hall MI, Wylie DR (2008) Relative Wulst volume is correlated with orbit orientation and binocular visual field in birds. J Comp Physiol A 194:267–282CrossRef
go back to reference Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psych 41:35–39CrossRef Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psych 41:35–39CrossRef
go back to reference Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York Jerison HJ (1973) Evolution of the brain and intelligence. Academic Press, New York
go back to reference Jhaveri S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken with observations on nucleus laminaris: a light and electron microscope study. Neuroscience 7:809–836PubMedCrossRef Jhaveri S, Morest DK (1982) Neuronal architecture in nucleus magnocellularis of the chicken with observations on nucleus laminaris: a light and electron microscope study. Neuroscience 7:809–836PubMedCrossRef
go back to reference Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427PubMedCrossRef Karten HJ (1967) The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res 6:409–427PubMedCrossRef
go back to reference Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Johns Hopkins, Baltimore Karten HJ, Hodos W (1967) A stereotaxic atlas of the brain of the pigeon. Johns Hopkins, Baltimore
go back to reference Kaskan PM, Franco ECS, Yamada ES, de Lima Silveira LC, Darlington RB, Finlay BL (2005) Peripheral variability and central constancy in mammalian visual system evolution. Proc R Soc Lond B 272:91–100CrossRef Kaskan PM, Franco ECS, Yamada ES, de Lima Silveira LC, Darlington RB, Finlay BL (2005) Peripheral variability and central constancy in mammalian visual system evolution. Proc R Soc Lond B 272:91–100CrossRef
go back to reference Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424 Konishi M (1973) How the owl tracks its prey. Am Sci 61:414–424
go back to reference Köppl C, Carr CE (1997) Low-frequency pathway in the barn owl’s auditory brainstem. J Comp Neurol 378:265–282PubMedCrossRef Köppl C, Carr CE (1997) Low-frequency pathway in the barn owl’s auditory brainstem. J Comp Neurol 378:265–282PubMedCrossRef
go back to reference Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704CrossRef Köppl C, Gleich O, Manley GA (1993) An auditory fovea in the barn owl cochlea. J Comp Physiol A 171:695–704CrossRef
go back to reference Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143PubMedCrossRef Köppl C, Wegscheider A, Gleich O, Manley GA (2000) A quantitative study of cochlear afferent axons in birds. Hear Res 139:123–143PubMedCrossRef
go back to reference Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25:1924–1934PubMedCrossRef Kuba H, Yamada R, Fukui I, Ohmori H (2005) Tonotopic specialization of auditory coincidence detection in nucleus laminaris of the chick. J Neurosci 25:1924–1934PubMedCrossRef
go back to reference Kubke MF, Carr CE (2006) Morphological variation in the nucleus laminaris of birds. Intern J Comp Psychol 19:83–97 Kubke MF, Carr CE (2006) Morphological variation in the nucleus laminaris of birds. Intern J Comp Psychol 19:83–97
go back to reference Kubke MF, Massoglia DP, Carr CE (2004) Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain Behav Evol 63:169–180PubMedPubMedCentralCrossRef Kubke MF, Massoglia DP, Carr CE (2004) Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain Behav Evol 63:169–180PubMedPubMedCentralCrossRef
go back to reference Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus Domesticus). The Johns Hopkins University Press, Baltimore Kuenzel WJ, Masson M (1988) A stereotaxic atlas of the brain of the chick (Gallus Domesticus). The Johns Hopkins University Press, Baltimore
go back to reference Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246PubMedCrossRef Lefebvre L, Reader SM, Sol D (2004) Brains, innovations and evolution in birds and primates. Brain Behav Evol 63:233–246PubMedCrossRef
go back to reference Lippe WR (1991) Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminoglycoside intoxication. Hear Res 51:193–202PubMedCrossRef Lippe WR (1991) Reduction and recovery of neuronal size in the cochlear nucleus of the chicken following aminoglycoside intoxication. Hear Res 51:193–202PubMedCrossRef
go back to reference MacLeod KM, Soares D, Carr CE (2006) Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). J Comp Neurol 495:185–201PubMedPubMedCentralCrossRef MacLeod KM, Soares D, Carr CE (2006) Interaural timing difference circuits in the auditory brainstem of the emu (Dromaius novaehollandiae). J Comp Neurol 495:185–201PubMedPubMedCentralCrossRef
go back to reference Maiorana VA, Schleidt WM (1972) The auditory sensitivity of the turkey. J Aud Res 12:203–207 Maiorana VA, Schleidt WM (1972) The auditory sensitivity of the turkey. J Aud Res 12:203–207
go back to reference Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738PubMedCrossRef Marin F, Puelles L (1995) Morphological fate of rhombomeres in quail/chick chimeras: a segmental analysis of hindbrain nuclei. Eur J Neurosci 7:1714–1738PubMedCrossRef
go back to reference Neves K, Ferreira FM, Tovar-Moll F, Gravett N, Bennett NC, Kaswera C, Gilissen E, Manger PR, Herculano-Houzel S (2014) Cellular scaling rules for the brain of afrotherians. Front Neuroanat 8:1–13CrossRef Neves K, Ferreira FM, Tovar-Moll F, Gravett N, Bennett NC, Kaswera C, Gilissen E, Manger PR, Herculano-Houzel S (2014) Cellular scaling rules for the brain of afrotherians. Front Neuroanat 8:1–13CrossRef
go back to reference Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16PubMedCrossRef Niemiec AJ, Raphael Y, Moody DB (1994) Return of auditory function following structural regeneration after acoustic trauma: behavioral measures from quail. Hear Res 79:1–16PubMedCrossRef
go back to reference Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J Comp Neurol 164:435–448PubMedCrossRef Parks TN, Rubel EW (1975) Organization and development of brain stem auditory nuclei of the chicken: organization of projections from n. magnocellularis to n. laminaris. J Comp Neurol 164:435–448PubMedCrossRef
go back to reference Parks TN, Rubel EW (1978) Organization and development of the brainstem auditory nuclei of the chicken: primary afferent projections. J Comp Neurol 180:435–448CrossRef Parks TN, Rubel EW (1978) Organization and development of the brainstem auditory nuclei of the chicken: primary afferent projections. J Comp Neurol 180:435–448CrossRef
go back to reference Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573PubMed Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573PubMed
go back to reference Puelles L, Robles C, Martinez-de-la-Torre M, Martinez S (1994) New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick. J Comp Neurol 340:98–125PubMedCrossRef Puelles L, Robles C, Martinez-de-la-Torre M, Martinez S (1994) New subdivision schema for the avian torus semicircularis: neurochemical maps in the chick. J Comp Neurol 340:98–125PubMedCrossRef
go back to reference Puelles L, Martinez de la Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press, Waltham Puelles L, Martinez de la Torre M, Paxinos G, Watson C, Martinez S (2007) The chick brain in stereotaxic coordinates: an atlas featuring neuromeric subdivisions and mammalian homologies. Academic Press, Waltham
go back to reference Ribeiro PF, Manger PR, Catania KC, Kaas JH, Herculano-Houzel S (2014) Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Front Neuroanat 8:1–12CrossRef Ribeiro PF, Manger PR, Catania KC, Kaas JH, Herculano-Houzel S (2014) Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Front Neuroanat 8:1–12CrossRef
go back to reference Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of N. magnocellularis and N. laminaris. J Comp Neurol 164:411–434PubMedCrossRef Rubel EW, Parks TN (1975) Organization and development of brain stem auditory nuclei of the chicken: tonotopic organization of N. magnocellularis and N. laminaris. J Comp Neurol 164:411–434PubMedCrossRef
go back to reference Rubel EW, Smith DJ, Miller LC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of n. magnocellularis and n. laminaris. J Comp Neurol 166:469–490PubMedCrossRef Rubel EW, Smith DJ, Miller LC (1976) Organization and development of brain stem auditory nuclei of the chicken: ontogeny of n. magnocellularis and n. laminaris. J Comp Neurol 166:469–490PubMedCrossRef
go back to reference Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361CrossRef Sachs MB, Sinnott JM (1978) Responses to tones of single cells in nucleus magnocellularis and nucleus angularis of the redwing blackbird (Agelaius phoeniceus). J Comp Physiol 126:347–361CrossRef
go back to reference Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239PubMedCrossRef Smith DJ, Rubel EW (1979) Organization and development of brain stem auditory nuclei of the chicken: dendritic gradients in nucleus laminaris. J Comp Neurol 186:213–239PubMedCrossRef
go back to reference Soares D, Carr CE (2001) The cytoarchitecture of the nucleus angularis of the barn owl (Tyto alba). J Comp Neurol 429:192–205PubMedCrossRef Soares D, Carr CE (2001) The cytoarchitecture of the nucleus angularis of the barn owl (Tyto alba). J Comp Neurol 429:192–205PubMedCrossRef
go back to reference Stevens CF (2001) An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411:193–195PubMedCrossRef Stevens CF (2001) An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature 411:193–195PubMedCrossRef
go back to reference Striedter GF (2005) Principles of brain evolution. Sinauer, Sunderland Striedter GF (2005) Principles of brain evolution. Sinauer, Sunderland
go back to reference Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216PubMed Sullivan WE (1985) Classification of response patterns in cochlear nucleus of barn owl: correlation with functional response properties. J Neurophysiol 53:201–216PubMed
go back to reference Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799PubMed Sullivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799PubMed
go back to reference Takahashi T, Konishi M (1988a) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238PubMedCrossRef Takahashi T, Konishi M (1988a) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238PubMedCrossRef
go back to reference Takahashi T, Konishi M (1988b) Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211PubMedCrossRef Takahashi T, Konishi M (1988b) Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl. J Comp Neurol 274:190–211PubMedCrossRef
go back to reference Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786PubMed Takahashi T, Moiseff A, Konishi M (1984) Time and intensity cues are processed independently in the auditory system of the owl. J Neurosci 4:1781–1786PubMed
go back to reference Timmermans S, Lefebvre L, Boire D, Basu P (2000) Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav Evol 56:196–203PubMedCrossRef Timmermans S, Lefebvre L, Boire D, Basu P (2000) Relative size of the hyperstriatum ventrale is the best predictor of feeding innovation rate in birds. Brain Behav Evol 56:196–203PubMedCrossRef
go back to reference Van Dijk T (1973) A comparative study of hearing in owls of the family strigidae. Neth J Zool 23:131–167CrossRef Van Dijk T (1973) A comparative study of hearing in owls of the family strigidae. Neth J Zool 23:131–167CrossRef
go back to reference Wagner H, Gunturkun O, Nieder B (2003) Anatomical markers for the subdivisions of the barn owl’s inferior-collicular complex and adjacent peri- and subventricular structures. J Comp Neurol 465:145–159PubMedCrossRef Wagner H, Gunturkun O, Nieder B (2003) Anatomical markers for the subdivisions of the barn owl’s inferior-collicular complex and adjacent peri- and subventricular structures. J Comp Neurol 465:145–159PubMedCrossRef
go back to reference Walsh SA, Barrett PM, Milner AC, Manley G, Witmer LM (2009) Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proc R Soc Lond B 276:1355–1360CrossRef Walsh SA, Barrett PM, Milner AC, Manley G, Witmer LM (2009) Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds. Proc R Soc Lond B 276:1355–1360CrossRef
go back to reference Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol A 166:721–734PubMedCrossRef Warchol ME, Dallos P (1990) Neural coding in the chick cochlear nucleus. J Comp Physiol A 166:721–734PubMedCrossRef
go back to reference West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMedCrossRef
go back to reference Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307PubMedCrossRef Wild JM (1987) Nuclei of the lateral lemniscus project directly to the thalamic auditory nuclei in the pigeon. Brain Res 408:303–307PubMedCrossRef
go back to reference Wild JM (1995) Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus. J Comp Neurol 358:465–486PubMedCrossRef Wild JM (1995) Convergence of somatosensory and auditory projections in the avian torus semicircularis, including the central auditory nucleus. J Comp Neurol 358:465–486PubMedCrossRef
go back to reference Winter P (1963) Verglecende qualitative und quantitative untersuchungen an der horbahn von vogeln. Z Morphol Anthropol 52:365–400 Winter P (1963) Verglecende qualitative und quantitative untersuchungen an der horbahn von vogeln. Z Morphol Anthropol 52:365–400
go back to reference Wong P, Peebles JK, Asplund CL, Collins CE, Herculano-Houzel S, Kaas JH (2013) Faster scaling of auditory neurons in cortical areas relative to subcortical structures in primate brains. Brain Behav Evol 81:209–218PubMed Wong P, Peebles JK, Asplund CL, Collins CE, Herculano-Houzel S, Kaas JH (2013) Faster scaling of auditory neurons in cortical areas relative to subcortical structures in primate brains. Brain Behav Evol 81:209–218PubMed
Metadata
Title
A unique cellular scaling rule in the avian auditory system
Authors
Jeremy R. Corfield
Brendan Long
Justin M. Krilow
Douglas R. Wylie
Andrew N. Iwaniuk
Publication date
01-06-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-015-1064-1

Other articles of this Issue 5/2016

Brain Structure and Function 5/2016 Go to the issue