Skip to main content
Top
Published in: Brain Structure and Function 3/2016

01-04-2016 | Original Article

Congenital blindness affects diencephalic but not mesencephalic structures in the human brain

Authors: Luca Cecchetti, Emiliano Ricciardi, Giacomo Handjaras, Ron Kupers, Maurice Ptito, Pietro Pietrini

Published in: Brain Structure and Function | Issue 3/2016

Login to get access

Abstract

While there is ample evidence that the structure and function of visual cortical areas are affected by early visual deprivation, little is known of how early blindness modifies subcortical relay and association thalamic nuclei, as well as mesencephalic structures. Therefore, in the present multicenter study, we used MRI to measure volume of the superior and inferior colliculi, as well as of the thalamic nuclei relaying sensory and motor information to the neocortex, parcellated according to atlas-based thalamo-cortical connections, in 29 individuals with congenital blindness of peripheral origin (17 M, age 35.7 ± 14.3 years) and 29 sighted subjects (17 M, age 31.9 ± 9.0). Blind participants showed an overall volume reduction in the left (p = 0.008) and right (p = 0.007) thalami, as compared to the sighted individuals. Specifically, the lateral geniculate (i.e., primary visual thalamic relay nucleus) was 40 % reduced (left: p = 4 × 10−6, right: p < 1 × 10−6), consistent with findings from animal studies. In addition, associated thalamic nuclei that project to temporal (left: p = 0.005, right: p = 0.005), prefrontal (left: p = 0.010, right: p = 0.014), occipital (left: p = 0.005, right: p = 0.023), and right premotor (p = 0.024) cortical regions were also significantly reduced in the congenitally blind group. Conversely, volumes of the relay nuclei directly involved in auditory, motor, and somatosensory processing were not affected by visual deprivation. In contrast, no difference in volume was observed in either the superior or the inferior colliculus between the two groups. Our findings indicate that visual loss since birth leads to selective volumetric changes within diencephalic, but not mesencephalic, structures. Both changes in reciprocal cortico-thalamic connections or modifications in the intrinsic connectivity between relay and association nuclei of the thalamus may contribute to explain these alterations in thalamic volumes. Sparing of the superior colliculi is in line with their composite, multisensory projections, and with their not exclusive visual nature.
Appendix
Available only for authorised users
Literature
go back to reference Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868PubMed Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868PubMed
go back to reference Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci 51:1432–1438. doi:10.1167/iovs.09-3931 PubMedCrossRef Barnes GR, Li X, Thompson B, Singh KD, Dumoulin SO, Hess RF (2010) Decreased gray matter concentration in the lateral geniculate nuclei in human amblyopes. Invest Ophthalmol Vis Sci 51:1432–1438. doi:10.​1167/​iovs.​09-3931 PubMedCrossRef
go back to reference Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300 Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300
go back to reference Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145PubMedCrossRef Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145PubMedCrossRef
go back to reference Bonino D et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146:133–146PubMed Bonino D et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146:133–146PubMed
go back to reference Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10:489–499. doi:10.1006/nimg.1999.0497 PubMedCrossRef Burgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI volume of a reference brain: position and spatial variability of the optic radiation. NeuroImage 10:489–499. doi:10.​1006/​nimg.​1999.​0497 PubMedCrossRef
go back to reference Collignon O, Dormal G, Albouy G, Vandewalle G, Voss P, Phillips C, Lepore F (2013) Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769–2783. doi:10.1093/brain/awt176 PubMedCrossRef Collignon O, Dormal G, Albouy G, Vandewalle G, Voss P, Phillips C, Lepore F (2013) Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769–2783. doi:10.​1093/​brain/​awt176 PubMedCrossRef
go back to reference Crish SD, Dengler-Crish CM, Catania KC (2006) Central visual system of the naked mole-rat (Heterocephalus glaber). Anat Record Part A Discov Mol Cell Evol Biol 288:205–212. doi:10.1002/ar.a.20288 CrossRef Crish SD, Dengler-Crish CM, Catania KC (2006) Central visual system of the naked mole-rat (Heterocephalus glaber). Anat Record Part A Discov Mol Cell Evol Biol 288:205–212. doi:10.​1002/​ar.​a.​20288 CrossRef
go back to reference Cullen MJ, Kaiserman-Abramof IR (1976) Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J Neurocytol 5:407–424PubMedCrossRef Cullen MJ, Kaiserman-Abramof IR (1976) Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J Neurocytol 5:407–424PubMedCrossRef
go back to reference Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMedCrossRef
go back to reference Headon MP, Powell TP (1973) Cellular changes in the lateral geniculate nucleus of infant monkeys after suture of the eyelids. J Anat 116:135–145PubMedPubMedCentral Headon MP, Powell TP (1973) Cellular changes in the lateral geniculate nucleus of infant monkeys after suture of the eyelids. J Anat 116:135–145PubMedPubMedCentral
go back to reference Heil P, Bronchti G, Wollberg Z, Scheich H (1991) Invasion of visual cortex by the auditory system in the naturally blind mole rat. NeuroReport 2:735–738PubMedCrossRef Heil P, Bronchti G, Wollberg Z, Scheich H (1991) Invasion of visual cortex by the auditory system in the naturally blind mole rat. NeuroReport 2:735–738PubMedCrossRef
go back to reference Hendelman WJ (2005) Atlas of functional neuroanatomy, 2nd edn. CRC Press, Boca RatonCrossRef Hendelman WJ (2005) Atlas of functional neuroanatomy, 2nd edn. CRC Press, Boca RatonCrossRef
go back to reference Heumann D, Rabinowicz T (1980) Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated albino mouse. Exp Brain Res 38:75–85PubMedCrossRef Heumann D, Rabinowicz T (1980) Postnatal development of the dorsal lateral geniculate nucleus in the normal and enucleated albino mouse. Exp Brain Res 38:75–85PubMedCrossRef
go back to reference Hilbig H, Bidmon HJ, Zilles K, Busecke K (1999) Neuronal and glial structures of the superficial layers of the human superior colliculus. Anat Embryol 200:103–115PubMedCrossRef Hilbig H, Bidmon HJ, Zilles K, Busecke K (1999) Neuronal and glial structures of the superficial layers of the human superior colliculus. Anat Embryol 200:103–115PubMedCrossRef
go back to reference Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841PubMedCrossRef Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17:825–841PubMedCrossRef
go back to reference Johansen-Berg H, Behrens TE, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15:31–39. doi:10.1093/cercor/bhh105 PubMedCrossRef Johansen-Berg H, Behrens TE, Sillery E, Ciccarelli O, Thompson AJ, Smith SM, Matthews PM (2005) Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex 15:31–39. doi:10.​1093/​cercor/​bhh105 PubMedCrossRef
go back to reference Lee JY et al (2014) An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci 55:3468–3476. doi:10.1167/iovs.14-13902 PubMedCrossRef Lee JY et al (2014) An investigation of lateral geniculate nucleus volume in patients with primary open-angle glaucoma using 7 tesla magnetic resonance imaging. Invest Ophthalmol Vis Sci 55:3468–3476. doi:10.​1167/​iovs.​14-13902 PubMedCrossRef
go back to reference Leo A, Bernardi G, Handjaras G, Bonino D, Ricciardi E, Pietrini P (2012) Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals. Neural Plasticity 2012:720278. doi:10.1155/2012/720278 PubMedPubMedCentralCrossRef Leo A, Bernardi G, Handjaras G, Bonino D, Ricciardi E, Pietrini P (2012) Increased BOLD variability in the parietal cortex and enhanced parieto-occipital connectivity during tactile perception in congenitally blind individuals. Neural Plasticity 2012:720278. doi:10.​1155/​2012/​720278 PubMedPubMedCentralCrossRef
go back to reference Lund RD, Lund JS (1971) Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science 171:804–807PubMedCrossRef Lund RD, Lund JS (1971) Synaptic adjustment after deafferentation of the superior colliculus of the rat. Science 171:804–807PubMedCrossRef
go back to reference Masucci EF, Borts FT, Perl SM, Wener L, Schwankhaus J, Kurtzke JF (1995) MR vs CT in progressive supranuclear palsy Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society 19:361–368CrossRef Masucci EF, Borts FT, Perl SM, Wener L, Schwankhaus J, Kurtzke JF (1995) MR vs CT in progressive supranuclear palsy Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society 19:361–368CrossRef
go back to reference Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Duvernoy’s atlas of the human brain stem and cerebellum. Springer, WienCrossRef Naidich TP, Duvernoy HM, Delman BN, Sorensen AG, Kollias SS, Haacke EM (2009) Duvernoy’s atlas of the human brain stem and cerebellum. Springer, WienCrossRef
go back to reference Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRef Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15:1–25PubMedCrossRef
go back to reference Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359PubMedCrossRef Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359PubMedCrossRef
go back to reference Ptito M, Desgent S (2006) Sensory Input-Based Adaptation and Brain Architecture. In: Baltes PB, Reuter-Lorenz PA, Rosler F (eds) Lifespan development and the brain. Cambridge University Press, Cambridge, pp 111–133CrossRef Ptito M, Desgent S (2006) Sensory Input-Based Adaptation and Brain Architecture. In: Baltes PB, Reuter-Lorenz PA, Rosler F (eds) Lifespan development and the brain. Cambridge University Press, Cambridge, pp 111–133CrossRef
go back to reference Rademacher J, Burgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17:142–160PubMedCrossRef Rademacher J, Burgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. NeuroImage 17:142–160PubMedCrossRef
go back to reference Rhoades RW (1980) Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster. J Physiol 301:383–399PubMedPubMedCentralCrossRef Rhoades RW (1980) Effects of neonatal enucleation on the functional organization of the superior colliculus in the golden hamster. J Physiol 301:383–399PubMedPubMedCentralCrossRef
go back to reference Sabanciogullari V, Salk I, Balaban H, Oztoprak I, Kelkit S, Cimen M (2013) Magnetic resonance imaging mesencephalic tectum dimensions according to age and gender. Neurosciences 18:33–39PubMed Sabanciogullari V, Salk I, Balaban H, Oztoprak I, Kelkit S, Cimen M (2013) Magnetic resonance imaging mesencephalic tectum dimensions according to age and gender. Neurosciences 18:33–39PubMed
go back to reference Sakakura H, Iwama K (1967) Effects of bilateral eye enucleation upon single unit activity of the lateral geniculate body in free behaving cats. Brain Res 6:667–678PubMedCrossRef Sakakura H, Iwama K (1967) Effects of bilateral eye enucleation upon single unit activity of the lateral geniculate body in free behaving cats. Brain Res 6:667–678PubMedCrossRef
go back to reference Schiller PH (1977) The effect of superior colliculus ablation on saccades elicted by cortical stimulation. Brain Res 122:154–156PubMedCrossRef Schiller PH (1977) The effect of superior colliculus ablation on saccades elicted by cortical stimulation. Brain Res 122:154–156PubMedCrossRef
go back to reference Sherman JL, Citrin CM, Barkovich AJ, Bowen BJ (1987) MR imaging of the mesencephalic tectum: normal and pathologic variations. AJNR Am J Neuroradiol 8:59–64PubMed Sherman JL, Citrin CM, Barkovich AJ, Bowen BJ (1987) MR imaging of the mesencephalic tectum: normal and pathologic variations. AJNR Am J Neuroradiol 8:59–64PubMed
go back to reference Smith SA, Bedi KS (1997) Unilateral eye enucleation in adult rats causes neuronal loss in the contralateral superior colliculus. J Anat 190(Pt 4):481–490PubMedPubMedCentralCrossRef Smith SA, Bedi KS (1997) Unilateral eye enucleation in adult rats causes neuronal loss in the contralateral superior colliculus. J Anat 190(Pt 4):481–490PubMedPubMedCentralCrossRef
go back to reference Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. Rev Oculomot Res 3:213–255PubMed Sparks DL, Hartwich-Young R (1989) The deep layers of the superior colliculus. Rev Oculomot Res 3:213–255PubMed
go back to reference Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441PubMedCrossRef Sur M, Garraghty PE, Roe AW (1988) Experimentally induced visual projections into auditory thalamus and cortex. Science 242:1437–1441PubMedCrossRef
go back to reference Sylvester R, Josephs O, Driver J, Rees G (2007) Visual FMRI responses in human superior colliculus show a temporal-nasal asymmetry that is absent in lateral geniculate and visual cortex. J Neurophysiol 97:1495–1502. doi:10.1152/jn.00835.2006 PubMedCrossRef Sylvester R, Josephs O, Driver J, Rees G (2007) Visual FMRI responses in human superior colliculus show a temporal-nasal asymmetry that is absent in lateral geniculate and visual cortex. J Neurophysiol 97:1495–1502. doi:10.​1152/​jn.​00835.​2006 PubMedCrossRef
go back to reference Theoret H, Boire D, Herbin M, Ptito M (2001) Anatomical sparing in the superior colliculus of hemispherectomized monkeys. Brain Res 894:274–280PubMedCrossRef Theoret H, Boire D, Herbin M, Ptito M (2001) Anatomical sparing in the superior colliculus of hemispherectomized monkeys. Brain Res 894:274–280PubMedCrossRef
go back to reference Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inf Assoc JAMIA 8:443–459CrossRef Van Essen DC, Drury HA, Dickson J, Harwell J, Hanlon D, Anderson CH (2001) An integrated software suite for surface-based analyses of cerebral cortex. J Am Med Inf Assoc JAMIA 8:443–459CrossRef
go back to reference Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71:429–432PubMed Wallace MT, Stein BE (1994) Cross-modal synthesis in the midbrain depends on input from cortex. J Neurophysiol 71:429–432PubMed
go back to reference Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMed Wallace MT, Wilkinson LK, Stein BE (1996) Representation and integration of multiple sensory inputs in primate superior colliculus. J Neurophysiol 76:1246–1266PubMed
go back to reference Warmuth-Metz M, Naumann M, Csoti I, Solymosi L (2001) Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 58:1076–1079PubMedCrossRef Warmuth-Metz M, Naumann M, Csoti I, Solymosi L (2001) Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 58:1076–1079PubMedCrossRef
go back to reference White BJ, Munoz DP (2011) The superior colliculus. In: Liversedge S, Gilchrist I, Everling S (eds) Oxford handbook of eye movements, 1st edn. Oxford University Press, New York, pp 195–213 White BJ, Munoz DP (2011) The superior colliculus. In: Liversedge S, Gilchrist I, Everling S (eds) Oxford handbook of eye movements, 1st edn. Oxford University Press, New York, pp 195–213
go back to reference Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.1109/42.906424 PubMedCrossRef Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57. doi:10.​1109/​42.​906424 PubMedCrossRef
go back to reference Zvorykin VP (1980) New data on individual quantitative features of the human lateral geniculate body. Arkhiv anatomii gistologii i embriologii 78:24–27 Zvorykin VP (1980) New data on individual quantitative features of the human lateral geniculate body. Arkhiv anatomii gistologii i embriologii 78:24–27
Metadata
Title
Congenital blindness affects diencephalic but not mesencephalic structures in the human brain
Authors
Luca Cecchetti
Emiliano Ricciardi
Giacomo Handjaras
Ron Kupers
Maurice Ptito
Pietro Pietrini
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 3/2016
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0984-5

Other articles of this Issue 3/2016

Brain Structure and Function 3/2016 Go to the issue