Skip to main content
Top
Published in: Brain Structure and Function 5/2014

01-09-2014 | Original Article

Low-frequency stimulation inhibits epileptogenesis by modulating the early network of the limbic system as evaluated in amygdala kindling model

Authors: Yi Wang, Zhenghao Xu, Hui Cheng, Yi Guo, Cenglin Xu, Shuang Wang, Jianmin Zhang, Meiping Ding, Zhong Chen

Published in: Brain Structure and Function | Issue 5/2014

Login to get access

Abstract

Low-frequency stimulation (LFS) is emerging as a new option for the treatment of epilepsy. The present study was designed to determine whether there is a crucial period for the treatment of epileptogenesis with LFS. LFS was delivered at different time-points to evaluate its anti-epileptogenic effect on amygdala-kindling rats. 18F-fluorodeoxyglucose small-animal positron-emission tomography (microPET) and multi-channel EEG recording (MER) were used to investigate the dynamics of brain networks during epileptogenesis and LFS treatment. Interestingly, LFS delivered in the first 7 days significantly retarded the progression of behavioral seizure stages and shortened the afterdischarge duration (ADD), LFS delivered throughout the whole process resulted in similar effects. However, if LFS was delivered at the beginning of seizure stage 2 or 3 (5 ± 0.3 days during kindling acquisition), it had no anti-epileptogenic effect and even prolonged the ADD and enhanced synchronization of the EEGs. MicroPET study revealed a notable hypometabolism in the amygdala, piriform cortex, entorhinal cortex and other regions in the limbic system during the period from seizure stage 0 to stage 2 or 3. The glucose metabolism in those regions was specifically increased by LFS. MER further verified that an early network of afterdischarge spread was formed in those brain regions during kindling acquisition. Thus, we provided direct evidence that modulation of the early network in the limbic system is crucial for the anti-epileptogenic effect of LFS in amygdaloid-kindling rats.
Appendix
Available only for authorised users
Literature
go back to reference Avoli M, D’Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207CrossRefPubMed Avoli M, D’Antuono M, Louvel J, Kohling R, Biagini G, Pumain R, D’Arcangelo G, Tancredi V (2002) Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog Neurobiol 68(3):167–207CrossRefPubMed
go back to reference Blumenfeld H (2003) From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2):7–15CrossRefPubMed Blumenfeld H (2003) From molecules to networks: cortical/subcortical interactions in the pathophysiology of idiopathic generalized epilepsy. Epilepsia 44(Suppl 2):7–15CrossRefPubMed
go back to reference Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal RK, Englot DJ, Motelow J, Nersesyan H, Waxman SG, Levin AR (2008) Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49(3):400–409. doi:10.1111/j.1528-1167.2007.01458.x PubMedCentralCrossRefPubMed Blumenfeld H, Klein JP, Schridde U, Vestal M, Rice T, Khera DS, Bashyal C, Giblin K, Paul-Laughinghouse C, Wang F, Phadke A, Mission J, Agarwal RK, Englot DJ, Motelow J, Nersesyan H, Waxman SG, Levin AR (2008) Early treatment suppresses the development of spike-wave epilepsy in a rat model. Epilepsia 49(3):400–409. doi:10.​1111/​j.​1528-1167.​2007.​01458.​x PubMedCentralCrossRefPubMed
go back to reference Burchfiel JL, Applegate CD (1989) Stepwise progression of kindling: perspectives from the kindling antagonism model. Neurosci Biobehav Rev 13(4):289–299CrossRefPubMed Burchfiel JL, Applegate CD (1989) Stepwise progression of kindling: perspectives from the kindling antagonism model. Neurosci Biobehav Rev 13(4):289–299CrossRefPubMed
go back to reference Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B, Nataf F, Roux FX (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127(Pt 1):164–174. doi:10.1093/brain/awh014 CrossRefPubMed Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B, Nataf F, Roux FX (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127(Pt 1):164–174. doi:10.​1093/​brain/​awh014 CrossRefPubMed
go back to reference Dube C, Boyet S, Marescaux C, Nehlig A (2000) Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult Rat. Exp Neurol 162(1):146–157. doi:10.1006/exnr.2000.7324 CrossRefPubMed Dube C, Boyet S, Marescaux C, Nehlig A (2000) Progressive metabolic changes underlying the chronic reorganization of brain circuits during the silent phase of the lithium-pilocarpine model of epilepsy in the immature and adult Rat. Exp Neurol 162(1):146–157. doi:10.​1006/​exnr.​2000.​7324 CrossRefPubMed
go back to reference Geyer JD, Bilir E, Faught RE, Kuzniecky R, Gilliam F (1999) Significance of interictal temporal lobe delta activity for localization of the primary epileptogenic region. Neurology 52(1):202–205CrossRefPubMed Geyer JD, Bilir E, Faught RE, Kuzniecky R, Gilliam F (1999) Significance of interictal temporal lobe delta activity for localization of the primary epileptogenic region. Neurology 52(1):202–205CrossRefPubMed
go back to reference Graber KD, Fisher RS (2012) Deep brain stimulation for epilepsy: animal models. In: Noebels JL, Avoli M, Rogawski MA, et al (eds) Jasper’s basic mechanisms of the epilepsies [internet], 4th edn. National Center for Biotechnology Information (US), Bethesda (MD). Available from: http://www.ncbi.nlm.nih.gov/books/NBK98160/ Graber KD, Fisher RS (2012) Deep brain stimulation for epilepsy: animal models. In: Noebels JL, Avoli M, Rogawski MA, et al (eds) Jasper’s basic mechanisms of the epilepsies [internet], 4th edn. National Center for Biotechnology Information (US), Bethesda (MD). Available from: http://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK98160/​
go back to reference Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15(7):1137–1140CrossRefPubMed Grill WM, Snyder AN, Miocinovic S (2004) Deep brain stimulation creates an informational lesion of the stimulated nucleus. NeuroReport 15(7):1137–1140CrossRefPubMed
go back to reference Guo Y, Gao F, Wang S, Ding Y, Zhang H, Wang J, Ding MP (2009) In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience 162(4):972–979. doi:10.1016/j.neuroscience.2009.05.041 CrossRefPubMed Guo Y, Gao F, Wang S, Ding Y, Zhang H, Wang J, Ding MP (2009) In vivo mapping of temporospatial changes in glucose utilization in rat brain during epileptogenesis: an 18F-fluorodeoxyglucose-small animal positron emission tomography study. Neuroscience 162(4):972–979. doi:10.​1016/​j.​neuroscience.​2009.​05.​041 CrossRefPubMed
go back to reference Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156CrossRefPubMed Jueptner M, Weiller C (1995) Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2(2):148–156CrossRefPubMed
go back to reference Knowlton RC, Laxer KD, Klein G, Sawrie S, Ende G, Hawkins RA, Aassar OS, Soohoo K, Wong S, Barbaro N (2001) In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 57(7):1184–1190CrossRefPubMed Knowlton RC, Laxer KD, Klein G, Sawrie S, Ende G, Hawkins RA, Aassar OS, Soohoo K, Wong S, Barbaro N (2001) In vivo hippocampal glucose metabolism in mesial temporal lobe epilepsy. Neurology 57(7):1184–1190CrossRefPubMed
go back to reference Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18(6):655–660. doi:10.1038/76509 CrossRefPubMed Kornblum HI, Araujo DM, Annala AJ, Tatsukawa KJ, Phelps ME, Cherry SR (2000) In vivo imaging of neuronal activation and plasticity in the rat brain by high resolution positron emission tomography (microPET). Nat Biotechnol 18(6):655–660. doi:10.​1038/​76509 CrossRefPubMed
go back to reference Langer M, Brandt C, Zellinger C, Loscher W (2011) Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 61(5–6):1033–1047. doi:10.1016/j.neuropharm.2011.06.015 CrossRefPubMed Langer M, Brandt C, Zellinger C, Loscher W (2011) Therapeutic window of opportunity for the neuroprotective effect of valproate versus the competitive AMPA receptor antagonist NS1209 following status epilepticus in rats. Neuropharmacology 61(5–6):1033–1047. doi:10.​1016/​j.​neuropharm.​2011.​06.​015 CrossRefPubMed
go back to reference Le Gal La Salle, G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2. Raven Press, New York, pp 31–47 Le Gal La Salle, G (1981) Amygdaloid kindling in the rat: regional differences and general properties. In: Wada JA (ed) Kindling 2. Raven Press, New York, pp 31–47
go back to reference Loscher W, Schmidt D (2006) New Horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 69(3):183–272CrossRefPubMed Loscher W, Schmidt D (2006) New Horizons in the development of antiepileptic drugs: innovative strategies. Epilepsy Res 69(3):183–272CrossRefPubMed
go back to reference McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115 (6):1239–1248. doi:10.1016/j.clinph.2003.12.024 McIntyre CC, Savasta M, Kerkerian-Le Goff L, Vitek JL (2004) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115 (6):1239–1248. doi:10.​1016/​j.​clinph.​2003.​12.​024
go back to reference Otsuki K, Morimoto K, Sato K, Yamada N, Kuroda S (1998) Effects of lamotrigine and conventional antiepileptic drugs on amygdala- and hippocampal-kindled seizures in rats. Epilepsy Res 31(2):101–112CrossRefPubMed Otsuki K, Morimoto K, Sato K, Yamada N, Kuroda S (1998) Effects of lamotrigine and conventional antiepileptic drugs on amygdala- and hippocampal-kindled seizures in rats. Epilepsy Res 31(2):101–112CrossRefPubMed
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam, Boston Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam, Boston
go back to reference Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294CrossRefPubMed Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294CrossRefPubMed
go back to reference Reiher J, Beaudry M, Leduc CP (1989) Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci 16(4):398–401PubMed Reiher J, Beaudry M, Leduc CP (1989) Temporal intermittent rhythmic delta activity (TIRDA) in the diagnosis of complex partial epilepsy: sensitivity, specificity and predictive value. Can J Neurol Sci 16(4):398–401PubMed
go back to reference Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3):1894–1898CrossRefPubMed Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C (2003) Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 20(3):1894–1898CrossRefPubMed
go back to reference Sato M, Racine RJ, McIntyre DC (1990) Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 76(5):459–472CrossRefPubMed Sato M, Racine RJ, McIntyre DC (1990) Kindling: basic mechanisms and clinical validity. Electroencephalogr Clin Neurophysiol 76(5):459–472CrossRefPubMed
go back to reference Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42(4):515–524CrossRefPubMed Temkin NR (2001) Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42(4):515–524CrossRefPubMed
go back to reference Ullal GR, Ninchoji T, Uemura K (1989) Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 3(3):232–235CrossRefPubMed Ullal GR, Ninchoji T, Uemura K (1989) Low frequency stimulation induces an increase in after-discharge thresholds in hippocampal and amygdaloid kindling. Epilepsy Res 3(3):232–235CrossRefPubMed
go back to reference Velisek L, Veliskova J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326(1):61–63CrossRefPubMed Velisek L, Veliskova J, Stanton PK (2002) Low-frequency stimulation of the kindling focus delays basolateral amygdala kindling in immature rats. Neurosci Lett 326(1):61–63CrossRefPubMed
Metadata
Title
Low-frequency stimulation inhibits epileptogenesis by modulating the early network of the limbic system as evaluated in amygdala kindling model
Authors
Yi Wang
Zhenghao Xu
Hui Cheng
Yi Guo
Cenglin Xu
Shuang Wang
Jianmin Zhang
Meiping Ding
Zhong Chen
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0594-7

Other articles of this Issue 5/2014

Brain Structure and Function 5/2014 Go to the issue