Skip to main content
Top
Published in: Brain Structure and Function 5/2014

01-09-2014 | Original Article

Quantitative mapping of the local and extrinsic sources of GABA and Reelin to the layer Ia neuropil in the adult rat neocortex

Authors: Tania Ramos-Moreno, Francisco Clascá

Published in: Brain Structure and Function | Issue 5/2014

Login to get access

Abstract

Inputs to apical dendritic tufts have been considered to be crucial for associative learning, attention and similar ‘‘feedback’’ interactions and are located in neocortical layer Ia. Excitatory thalamic projections to apical tufts in layer Ia have been well characterized and their role in the cortical circuit has been emphasized. In addition, the neuropil and the extracellular matrix surrounding apical tufts are highly reactive to GABA and to the glycoprotein Reelin, respectively. Recently it has been shown that the GABA inhibition on apical dendrites can reduce the output of pyramidal cells in layer V, however, the origin of 89 % of the symmetric synapses in layer I still remains unknown. In the present study we have systematically analyzed the origin of the GABAergic neuropil in neocortical layer Ia in a qualitative and quantitative manner, and investigated the possible extrinsic origin of the rich extracellular Reelin content of the same layer. We show that the inhibitory inputs in a given spot in layer I come from cortical projections and arise mainly from Martinotti cells located directly under that same spot. Double bouquet and bipolar cells may also project to layer Ia although to a lesser extent and the external globus pallidus and zona incerta provide the remaining inhibitory inputs. Finally, our results suggest that Martinotti cells are also the main source of Reelin in layer Ia. The present data will help in the understanding of the cortical circuit and why it changes in pathological conditions.
Literature
go back to reference Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18(19):7779–7799PubMed Alcantara S, Ruiz M, D’Arcangelo G, Ezan F, de Lecea L, Curran T, Sotelo C, Soriano E (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18(19):7779–7799PubMed
go back to reference Avendaño C, Llamas A (1984) Thalamic and nonthalamic direct subcortical projections to association areas of the cat’s cerebral cortex. Cortical Integration. Raven Press, New York Avendaño C, Llamas A (1984) Thalamic and nonthalamic direct subcortical projections to association areas of the cat’s cerebral cortex. Cortical Integration. Raven Press, New York
go back to reference Avendano C, Stepniewska I, Rausell E, Reinoso-Suarez F (1990) Segregation and heterogeneity of thalamic cell populations projecting to superficial layers of posterior parietal cortex: a retrograde tracer study in cat and monkey. Neuroscience 39(3):547–559PubMedCrossRef Avendano C, Stepniewska I, Rausell E, Reinoso-Suarez F (1990) Segregation and heterogeneity of thalamic cell populations projecting to superficial layers of posterior parietal cortex: a retrograde tracer study in cat and monkey. Neuroscience 39(3):547–559PubMedCrossRef
go back to reference Callaway EM (2002) Cell type specificity of local cortical connections. J Neurocytol 31(3–5):231–237PubMedCrossRef Callaway EM (2002) Cell type specificity of local cortical connections. J Neurocytol 31(3–5):231–237PubMedCrossRef
go back to reference Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1–2):163–170PubMedCrossRef Cauller L (1995) Layer I of primary sensory neocortex: where top-down converges upon bottom-up. Behav Brain Res 71(1–2):163–170PubMedCrossRef
go back to reference Cauller LJ, Connors BW (1994) Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 14(2):751–762PubMed Cauller LJ, Connors BW (1994) Synaptic physiology of horizontal afferents to layer I in slices of rat SI neocortex. J Neurosci 14(2):751–762PubMed
go back to reference Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390(2):297–310PubMedCrossRef Cauller LJ, Clancy B, Connors BW (1998) Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I. J Comp Neurol 390(2):297–310PubMedCrossRef
go back to reference Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27(11):2727–2733. doi:10.1523/jneurosci.3758-06.2007 PubMedCrossRef Chin J, Massaro CM, Palop JJ, Thwin MT, Yu GQ, Bien-Ly N, Bender A, Mucke L (2007) Reelin depletion in the entorhinal cortex of human amyloid precursor protein transgenic mice and humans with Alzheimer’s disease. J Neurosci 27(11):2727–2733. doi:10.​1523/​jneurosci.​3758-06.​2007 PubMedCrossRef
go back to reference Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407(2):275–286PubMedCrossRef Clancy B, Cauller LJ (1999) Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex. J Comp Neurol 407(2):275–286PubMedCrossRef
go back to reference Clasca F, Avendano C, Roman-Guindo A, Llamas A, Reinoso-Suarez F (1992) Innervation from the claustrum of the frontal association and motor areas: axonal transport studies in the cat. J Comp Neurol 326(3):402–422. doi:10.1002/cne.903260307 PubMedCrossRef Clasca F, Avendano C, Roman-Guindo A, Llamas A, Reinoso-Suarez F (1992) Innervation from the claustrum of the frontal association and motor areas: axonal transport studies in the cat. J Comp Neurol 326(3):402–422. doi:10.​1002/​cne.​903260307 PubMedCrossRef
go back to reference DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3(4):273–289PubMedCrossRef DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3(4):273–289PubMedCrossRef
go back to reference DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28 K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14(1):1–19PubMedCrossRef DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28 K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14(1):1–19PubMedCrossRef
go back to reference Defelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412(3):515–526PubMedCrossRef Defelipe J, Gonzalez-Albo MC, Del Rio MR, Elston GN (1999) Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey. J Comp Neurol 412(3):515–526PubMedCrossRef
go back to reference Dinocourt C, Petanjek Z, Freund TF, Ben-Ari Y, Esclapez M (2003) Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 459(4):407–425. doi:10.1002/cne.10622 PubMedCrossRef Dinocourt C, Petanjek Z, Freund TF, Ben-Ari Y, Esclapez M (2003) Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 459(4):407–425. doi:10.​1002/​cne.​10622 PubMedCrossRef
go back to reference Duveau V, Madhusudan A, Caleo M, Knuesel I, Fritschy JM (2011) Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 21(9):935–944. doi:10.1002/hipo.20793 PubMed Duveau V, Madhusudan A, Caleo M, Knuesel I, Fritschy JM (2011) Impaired reelin processing and secretion by Cajal-Retzius cells contributes to granule cell dispersion in a mouse model of temporal lobe epilepsy. Hippocampus 21(9):935–944. doi:10.​1002/​hipo.​20793 PubMed
go back to reference Fabri M, Manzoni T (1996) Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 72(2):435–448PubMedCrossRef Fabri M, Manzoni T (1996) Glutamate decarboxylase immunoreactivity in corticocortical projecting neurons of rat somatic sensory cortex. Neuroscience 72(2):435–448PubMedCrossRef
go back to reference Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358PubMedCrossRef Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex 7(4):347–358PubMedCrossRef
go back to reference Gonchar YA, Johnson PB, Weinberg RJ (1995) GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I. Brain Res 697(1–2):27–34PubMedCrossRef Gonchar YA, Johnson PB, Weinberg RJ (1995) GABA-immunopositive neurons in rat neocortex with contralateral projections to S-I. Brain Res 697(1–2):27–34PubMedCrossRef
go back to reference Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383(2):163–177PubMedCrossRef Gritti I, Mainville L, Mancia M, Jones BE (1997) GABAergic and other noncholinergic basal forebrain neurons, together with cholinergic neurons, project to the mesocortex and isocortex in the rat. J Comp Neurol 383(2):163–177PubMedCrossRef
go back to reference Herkenham M (1986) Cerebral cortex. In: Jones EG, Peters A (eds) New perspectives on the organization and evolution of nonspecific thalamocortical projections. Plenum, New York, pp 403–445 Herkenham M (1986) Cerebral cortex. In: Jones EG, Peters A (eds) New perspectives on the organization and evolution of nonspecific thalamocortical projections. Plenum, New York, pp 403–445
go back to reference Jones E (1984) History of cortical citology vol 1. Cerebral cortex, cellular components of the cerebral cortex. Plenum Press, New York Jones E (1984) History of cortical citology vol 1. Cerebral cortex, cellular components of the cerebral cortex. Plenum Press, New York
go back to reference Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24(10):595–601PubMedCrossRef Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24(10):595–601PubMedCrossRef
go back to reference Kaiser KM, Zilberter Y, Sakmann B (2001) Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J Physiol 535(Pt 1):17–31PubMedCentralPubMedCrossRef Kaiser KM, Zilberter Y, Sakmann B (2001) Back-propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex. J Physiol 535(Pt 1):17–31PubMedCentralPubMedCrossRef
go back to reference Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15(4):2638–2655PubMed Kawaguchi Y (1995) Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J Neurosci 15(4):2638–2655PubMed
go back to reference Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287PubMedCrossRef Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287PubMedCrossRef
go back to reference Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70(1):387–396PubMed Kawaguchi Y, Kubota Y (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70(1):387–396PubMed
go back to reference Koester SE, O’Leary DD (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12(4):1382–1393PubMed Koester SE, O’Leary DD (1992) Functional classes of cortical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12(4):1382–1393PubMed
go back to reference Kowianski P, Timmermans JP, Morys J (2001) Differentiation in the immunocytochemical features of intrinsic and cortically projecting neurons in the rat claustrum—combined immunocytochemical and axonal transport study. Brain Res 905(1–2):63–71PubMedCrossRef Kowianski P, Timmermans JP, Morys J (2001) Differentiation in the immunocytochemical features of intrinsic and cortically projecting neurons in the rat claustrum—combined immunocytochemical and axonal transport study. Brain Res 905(1–2):63–71PubMedCrossRef
go back to reference Lin CS, Nicolelis MA, Schneider JS, Chapin JK (1990) A major direct GABAergic pathway from zona incerta to neocortex. Science 248(4962):1553–1556PubMedCrossRef Lin CS, Nicolelis MA, Schneider JS, Chapin JK (1990) A major direct GABAergic pathway from zona incerta to neocortex. Science 248(4962):1553–1556PubMedCrossRef
go back to reference Lin RC, Nicolelis MA, Chapin JK (1997) Topographic and laminar organizations of the incertocortical pathway in rats. Neuroscience 81(3):641–651PubMedCrossRef Lin RC, Nicolelis MA, Chapin JK (1997) Topographic and laminar organizations of the incertocortical pathway in rats. Neuroscience 81(3):641–651PubMedCrossRef
go back to reference Llamas A, Clasca F, Avendano C (1989) Amygdaloid innervation of the frontal cortex in cats. Rev Esp Fisiol 45 Suppl:139–149PubMed Llamas A, Clasca F, Avendano C (1989) Amygdaloid innervation of the frontal cortex in cats. Rev Esp Fisiol 45 Suppl:139–149PubMed
go back to reference Martinez-Cerdeno V, Clasca F (2002) Reelin immunoreactivity in the adult neocortex: a comparative study in rodents, carnivores, and non-human primates. Brain Res Bull 57(3–4):485–488PubMedCrossRef Martinez-Cerdeno V, Clasca F (2002) Reelin immunoreactivity in the adult neocortex: a comparative study in rodents, carnivores, and non-human primates. Brain Res Bull 57(3–4):485–488PubMedCrossRef
go back to reference Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMed Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586PubMed
go back to reference McDonald CT, Burkhalter A (1993) Organization of long-range inhibitory connections with rat visual cortex. J Neurosci 13(2):768–781PubMed McDonald CT, Burkhalter A (1993) Organization of long-range inhibitory connections with rat visual cortex. J Neurosci 13(2):768–781PubMed
go back to reference Mitchell BD, Cauller LJ (2001) Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res 921(1–2):68–77PubMedCrossRef Mitchell BD, Cauller LJ (2001) Corticocortical and thalamocortical projections to layer I of the frontal neocortex in rats. Brain Res 921(1–2):68–77PubMedCrossRef
go back to reference Nicolelis MA, Chapin JK, Lin RC (1995) Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Neuroscience 65(2):609–631PubMedCrossRef Nicolelis MA, Chapin JK, Lin RC (1995) Development of direct GABAergic projections from the zona incerta to the somatosensory cortex of the rat. Neuroscience 65(2):609–631PubMedCrossRef
go back to reference Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, San Diego
go back to reference Reep RL (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain Behav Evol 56(4):212–234PubMedCrossRef Reep RL (2000) Cortical layer VII and persistent subplate cells in mammalian brains. Brain Behav Evol 56(4):212–234PubMedCrossRef
go back to reference Rubio-Garrido P, Perez-de-Manzo F, Clasca F (2007) Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: a double-labeling analysis in the rat. Neuroscience 149(1):242–250. doi:10.1016/j.neuroscience.2007.07.036 Rubio-Garrido P, Perez-de-Manzo F, Clasca F (2007) Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: a double-labeling analysis in the rat. Neuroscience 149(1):242–250. doi:10.​1016/​j.​neuroscience.​2007.​07.​036
go back to reference Rubio-Garrido P, Perez-de-Manzo F, Porrero C, Galazo MJ, Clasca F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19(10):2380–2395. doi:10.1093/cercor/bhn259 PubMedCrossRef Rubio-Garrido P, Perez-de-Manzo F, Porrero C, Galazo MJ, Clasca F (2009) Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. Cereb Cortex 19(10):2380–2395. doi:10.​1093/​cercor/​bhn259 PubMedCrossRef
go back to reference Saez-Valero J, Costell M, Sjogren M, Andreasen N, Blennow K, Luque JM (2003) Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J Neurosci Res 72(1):132–136. doi:10.1002/jnr.10554 PubMedCrossRef Saez-Valero J, Costell M, Sjogren M, Andreasen N, Blennow K, Luque JM (2003) Altered levels of cerebrospinal fluid reelin in frontotemporal dementia and Alzheimer’s disease. J Neurosci Res 72(1):132–136. doi:10.​1002/​jnr.​10554 PubMedCrossRef
go back to reference Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15(12):1867–1873PubMedCrossRef Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15(12):1867–1873PubMedCrossRef
go back to reference Shepherd GM, Brayton RK, Miller JP, Segev I, Rinzel J, Rall W (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc Natl Acad Sci USA 82(7):2192–2195PubMedCentralPubMedCrossRef Shepherd GM, Brayton RK, Miller JP, Segev I, Rinzel J, Rall W (1985) Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc Natl Acad Sci USA 82(7):2192–2195PubMedCentralPubMedCrossRef
go back to reference Shlosberg D, Patrick SL, Buskila Y, Amitai Y (2003) Inhibitory effect of mouse neocortex layer I on the underlying cellular network. Eur J Neurosci 18(10):2751–2759PubMedCrossRef Shlosberg D, Patrick SL, Buskila Y, Amitai Y (2003) Inhibitory effect of mouse neocortex layer I on the underlying cellular network. Eur J Neurosci 18(10):2751–2759PubMedCrossRef
go back to reference Vogt B (1991) The role of layer I in cortical function. In: Peters A, Jones EG (eds) vol 9. Plenum Press, New York Vogt B (1991) The role of layer I in cortical function. In: Peters A, Jones EG (eds) vol 9. Plenum Press, New York
go back to reference Zhang X, Hannesson DK, Saucier DM, Wallace AE, Howland J, Corcoran ME (2001) Susceptibility to kindling and neuronal connections of the anterior claustrum. J Neurosci 21(10):3674–3687PubMed Zhang X, Hannesson DK, Saucier DM, Wallace AE, Howland J, Corcoran ME (2001) Susceptibility to kindling and neuronal connections of the anterior claustrum. J Neurosci 21(10):3674–3687PubMed
Metadata
Title
Quantitative mapping of the local and extrinsic sources of GABA and Reelin to the layer Ia neuropil in the adult rat neocortex
Authors
Tania Ramos-Moreno
Francisco Clascá
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0591-x

Other articles of this Issue 5/2014

Brain Structure and Function 5/2014 Go to the issue