Skip to main content
Top
Published in: Brain Structure and Function 5/2014

01-09-2014 | Original Article

Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex

Authors: David A. Orner, Chia-Chien Chen, Daniella E. Orner, Joshua C. Brumberg

Published in: Brain Structure and Function | Issue 5/2014

Login to get access

Abstract

Dendritic spines are small protrusions that serve as the principal recipients of excitatory inputs onto cortical pyramidal cells. Alterations in spine and filopodia density and morphology correlate with both developmental maturity and changes in synaptic strength. In order to better understand the developmental profile of dendritic protrusion (dendritic spines + filopodia) morphology and density over the animal’s first postnatal year, we used the Golgi staining technique to label neurons and their dendritic protrusions in mice. We focused on quantifying the density per length of dendrite and categorizing the morphology of dendritic protrusions of layer VI pyramidal neurons residing in barrel cortex using the computer assisted reconstruction program Neurolucida. We classified dendritic protrusion densities at seven developmental time points: postnatal day (PND) 15, 30, 60, 90, 180, 270, and 360. Our findings suggest that the dendritic protrusions in layer VI barrel cortex pyramidal neurons are not static, and their density as well as relative morphological distribution change over time. We observed a significant increase in mushroom spines and a decrease in filopodia as the animals matured. Further analyses show that as the animal mature there was a reduction in pyramidal cell dendritic lengths overall, as well as a decrease in overall protrusion densities. The ratio of apical to basilar density decreased as well. Characterizing the profile of cortical layer VI dendritic protrusions within the first postnatal year will enable us to better understand the relationship between the overall developmental maturation profile and dendritic spine functioning.
Literature
go back to reference Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143PubMedCentralPubMedCrossRef Arellano JI, Benavides-Piccione R, Defelipe J, Yuste R (2007) Ultrastructure of dendritic spines: correlation between synaptic and spine morphologies. Front Neurosci 1:131–143PubMedCentralPubMedCrossRef
go back to reference Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J (2012) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex. doi:10.1093/cercor/bhs154 PubMedCentral Benavides-Piccione R, Fernaud-Espinosa I, Robles V, Yuste R, DeFelipe J (2012) Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. Cereb Cortex. doi:10.​1093/​cercor/​bhs154 PubMedCentral
go back to reference Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386 Bourne J, Harris KM (2007) Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol 17:381–386
go back to reference Brumberg JC, Hamzei-Sichani F, Yuste R (2003) Morphological and physiological characterization of layer VI corticofugal neurons of mouse primary visual cortex. J Neurophysiol 89:2854–2867PubMedCrossRef Brumberg JC, Hamzei-Sichani F, Yuste R (2003) Morphological and physiological characterization of layer VI corticofugal neurons of mouse primary visual cortex. J Neurophysiol 89:2854–2867PubMedCrossRef
go back to reference Chen CC, Lu HC, Brumberg JC (2012b) mGluR5 knockout mice display increased dendritic spine densities. Neurosci Lett. E-pub. PMID: 22819970 Chen CC, Lu HC, Brumberg JC (2012b) mGluR5 knockout mice display increased dendritic spine densities. Neurosci Lett. E-pub. PMID: 22819970
go back to reference Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef
go back to reference Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515PubMedCentralPubMedCrossRef Dumitriu D, Hao J, Hara Y, Kaufmann J, Janssen WG, Lou W, Rapp PR, Morrison JH (2010) Selective changes in thin spine density and morphology in monkey prefrontal cortex correlate with aging-related cognitive impairment. J Neurosci 30:7507–7515PubMedCentralPubMedCrossRef
go back to reference Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275PubMedCrossRef Elston GN, Oga T, Fujita I (2009) Spinogenesis and pruning scales across functional hierarchies. J Neurosci 29:3271–3275PubMedCrossRef
go back to reference Elston GN, Oga T, Okamoto T, Fujita I (2010) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20:1398–1408PubMedCrossRef Elston GN, Oga T, Okamoto T, Fujita I (2010) Spinogenesis and pruning from early visual onset to adulthood: an intracellular injection study of layer III pyramidal cells in the ventral visual cortical pathway of the macaque monkey. Cereb Cortex 20:1398–1408PubMedCrossRef
go back to reference Feldman ML, Dowd C (1975) Loss of dendritic spines in aged cerebral cortex. Anat Embryol 148:279–301PubMedCrossRef Feldman ML, Dowd C (1975) Loss of dendritic spines in aged cerebral cortex. Anat Embryol 148:279–301PubMedCrossRef
go back to reference Fiala JC, Harris KM (1999) Dendrite structure. In: Stuart G, Spruston N, Häusser M (eds) Dendrites. Oxford University Press, Oxford, pp 1–35 Fiala JC, Harris KM (1999) Dendrite structure. In: Stuart G, Spruston N, Häusser M (eds) Dendrites. Oxford University Press, Oxford, pp 1–35
go back to reference Garrett JE, Wellman CL (2009) Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162(1):195–207PubMedCentralPubMedCrossRef Garrett JE, Wellman CL (2009) Chronic stress effects on dendritic morphology in medial prefrontal cortex: sex differences and estrogen dependence. Neuroscience 162(1):195–207PubMedCentralPubMedCrossRef
go back to reference Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816PubMedCrossRef Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420:812–816PubMedCrossRef
go back to reference Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, Morrison JH (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104:11465–11470PubMedCentralPubMedCrossRef Hao J, Rapp PR, Janssen WG, Lou W, Lasley BL, Hof PR, Morrison JH (2007) Interactive effects of age and estrogen on cognition and pyramidal neurons in monkey prefrontal cortex. Proc Natl Acad Sci USA 104:11465–11470PubMedCentralPubMedCrossRef
go back to reference Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Psychol 17:341–371 Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Psychol 17:341–371
go back to reference Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997PubMed Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997PubMed
go back to reference Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658PubMedCrossRef Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658PubMedCrossRef
go back to reference Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291PubMedCrossRef Holtmaat AJ, Trachtenberg JT, Wilbrecht L, Shepherd GM, Zhang X, Knott GW, Svoboda K (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291PubMedCrossRef
go back to reference Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044PubMedCrossRef Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044PubMedCrossRef
go back to reference Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef Jacobs B, Driscoll L, Schall M (1997) Life-span dendritic and spine changes in areas 10 and 18 of human cortex: a quantitative Golgi study. J Comp Neurol 386:661–680PubMedCrossRef
go back to reference Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19:2248–2268PubMedCentralPubMedCrossRef Kabaso D, Coskren PJ, Henry BI, Hof PR, Wearne SL (2009) The electrotonic structure of pyramidal neurons contributing to prefrontal cortical circuits in macaque monkeys is significantly altered in aging. Cereb Cortex 19:2248–2268PubMedCentralPubMedCrossRef
go back to reference Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368PubMedCrossRef Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368PubMedCrossRef
go back to reference Kawato M, Hamaguchi T, Murakami F, Tsukahara N (1984) Quantitative analysis of electrical properties of dendritic spines. Biol Cybern 50(6):447–454PubMedCrossRef Kawato M, Hamaguchi T, Murakami F, Tsukahara N (1984) Quantitative analysis of electrical properties of dendritic spines. Biol Cybern 50(6):447–454PubMedCrossRef
go back to reference Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422PubMed Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413–422PubMed
go back to reference Koch C, Zador A, Brown TH (1992) Dendritic spines: convergence of theory and experiment. Science 256:973–974PubMedCrossRef Koch C, Zador A, Brown TH (1992) Dendritic spines: convergence of theory and experiment. Science 256:973–974PubMedCrossRef
go back to reference Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54(3):311–325PubMedCrossRef Kolb B, Teskey GC (2012) Age, experience, injury, and the changing brain. Dev Psychobiol 54(3):311–325PubMedCrossRef
go back to reference Konur S, Rabinowitz D, Fenstermaker V, Yuste R (2003) Systematic regulation of spine head diameters and densities in pyramidal neurons from juvenile mice. J Neurobiol 56:95–112PubMedCrossRef Konur S, Rabinowitz D, Fenstermaker V, Yuste R (2003) Systematic regulation of spine head diameters and densities in pyramidal neurons from juvenile mice. J Neurobiol 56:95–112PubMedCrossRef
go back to reference Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881PubMedCrossRef Lendvai B, Stern EA, Chen B, Svoboda K (2000) Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo. Nature 404(6780):876–881PubMedCrossRef
go back to reference Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092PubMedCrossRef Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092PubMedCrossRef
go back to reference Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef
go back to reference McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803PubMedCrossRef McAllister AK, Lo DC, Katz LC (1995) Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:791–803PubMedCrossRef
go back to reference Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. PNAS 106(7):2423–2428PubMedCentralPubMedCrossRef Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M (2009) Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. PNAS 106(7):2423–2428PubMedCentralPubMedCrossRef
go back to reference Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250PubMedCentralPubMed Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13(4):240–250PubMedCentralPubMed
go back to reference Mostany R, Anstey JE, Crump KL, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33(9):4094–4104PubMedCrossRef Mostany R, Anstey JE, Crump KL, Maco B, Knott G, Portera-Cailliau C (2013) Altered synaptic dynamics during normal brain aging. J Neurosci 33(9):4094–4104PubMedCrossRef
go back to reference Pannese E (2011) Morphological changes in nerve cells during normal aging. Brain Struct Funct 216:85–89PubMedCrossRef Pannese E (2011) Morphological changes in nerve cells during normal aging. Brain Struct Funct 216:85–89PubMedCrossRef
go back to reference Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex: the perikaryon, dendrites and spines. Am J Anat 127:321–355PubMedCrossRef Peters A, Kaiserman-Abramof IR (1970) The small pyramidal neuron of the rat cerebral cortex: the perikaryon, dendrites and spines. Am J Anat 127:321–355PubMedCrossRef
go back to reference Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33(10):2357–2372PubMedCentralPubMedCrossRef Peters A, Kemper T (2012) A review of the structural alterations in the cerebral hemispheres of the aging rhesus monkey. Neurobiol Aging 33(10):2357–2372PubMedCentralPubMedCrossRef
go back to reference Richardson RJ, Blundon JA, Bayazitov IT, Zakharenko SS (2009) Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J Neurosci 29(20):6406–6417PubMedCentralPubMedCrossRef Richardson RJ, Blundon JA, Bayazitov IT, Zakharenko SS (2009) Connectivity patterns revealed by mapping of active inputs on dendrites of thalamorecipient neurons in the auditory cortex. J Neurosci 29(20):6406–6417PubMedCentralPubMedCrossRef
go back to reference Ruan YI, Zhigang L, Fan Y, Zou B, Xu ZC (2009) Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia. J Neurosci Res 87:61–68PubMedCrossRef Ruan YI, Zhigang L, Fan Y, Zou B, Xu ZC (2009) Diversity and fluctuation of spine morphology in CA1 pyramidal neurons after transient global ischemia. J Neurosci Res 87:61–68PubMedCrossRef
go back to reference Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115 Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115
go back to reference Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406PubMedCentralPubMed Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87(4):387–406PubMedCentralPubMed
go back to reference Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21(16):6292–6297PubMed Shors TJ, Chua C, Falduto J (2001) Sex differences and opposite effects of stress on dendritic spine density in the male versus female hippocampus. J Neurosci 21(16):6292–6297PubMed
go back to reference Shors TJ, Falduto J, Leuner B (2004) The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur J Neurosci 19(1):145–150PubMedCentralPubMedCrossRef Shors TJ, Falduto J, Leuner B (2004) The opposite effects of stress on dendritic spines in male vs. female rats are NMDA receptor-dependent. Eur J Neurosci 19(1):145–150PubMedCentralPubMedCrossRef
go back to reference Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624PubMedCrossRef Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624PubMedCrossRef
go back to reference Teskey GC, Hutchinson JE, Kolb B (1999) Sex differences in cortical plasticity and behavior following anterior cortical kindling in rats. Cereb Cortex 9(7):675–682PubMedCrossRef Teskey GC, Hutchinson JE, Kolb B (1999) Sex differences in cortical plasticity and behavior following anterior cortical kindling in rats. Cereb Cortex 9(7):675–682PubMedCrossRef
go back to reference Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:1 Thomson AM (2010) Neocortical layer 6, a review. Front Neuroanat 4:1
go back to reference Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794PubMedCrossRef Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420:788–794PubMedCrossRef
go back to reference Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205–242PubMedCrossRef Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: the description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17(2):205–242PubMedCrossRef
go back to reference Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349PubMedCrossRef Yacoubian TA, Lo DC (2000) Truncated and full-length TrkB receptors regulate distinct modes of dendritic growth. Nat Neurosci 3:342–349PubMedCrossRef
go back to reference Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924PubMedCrossRef Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with lifelong memories. Nature 462(7275):920–924PubMedCrossRef
go back to reference Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34PubMedCrossRef Yuste R, Bonhoeffer T (2004) Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat Rev Neurosci 5:24–34PubMedCrossRef
go back to reference Zuo Y, Yang G, Kwon E, Gan WB (2005a) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261–265PubMedCrossRef Zuo Y, Yang G, Kwon E, Gan WB (2005a) Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436(7048):261–265PubMedCrossRef
go back to reference Zuo Y, Lin A, Chang P, Gan WB (2005b) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181–189PubMedCrossRef Zuo Y, Lin A, Chang P, Gan WB (2005b) Development of long-term dendritic spine stability in diverse regions of cerebral cortex. Neuron 46(2):181–189PubMedCrossRef
Metadata
Title
Alterations of dendritic protrusions over the first postnatal year of a mouse: an analysis in layer VI of the barrel cortex
Authors
David A. Orner
Chia-Chien Chen
Daniella E. Orner
Joshua C. Brumberg
Publication date
01-09-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 5/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0596-5

Other articles of this Issue 5/2014

Brain Structure and Function 5/2014 Go to the issue