Skip to main content
Top
Published in: Brain Structure and Function 4/2014

01-07-2014 | Original Article

Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat

Authors: Jun Il Kang, Marianne Groleau, Florence Dotigny, Hugo Giguère, Elvire Vaucher

Published in: Brain Structure and Function | Issue 4/2014

Login to get access

Abstract

The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
Literature
go back to reference Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur J Neurosci 10(9):2887–2895PubMedCrossRef Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (1998) Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur J Neurosci 10(9):2887–2895PubMedCrossRef
go back to reference Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, Audinat E (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88(3):1318–1327PubMed Christophe E, Roebuck A, Staiger JF, Lavery DJ, Charpak S, Audinat E (2002) Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. J Neurophysiol 88(3):1318–1327PubMed
go back to reference Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38(5):819–829. doi:10.1016/S0896-6273(03)00288-5 PubMedCrossRef Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the Basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38(5):819–829. doi:10.​1016/​S0896-6273(03)00288-5 PubMedCrossRef
go back to reference Dringenberg HC, Hamze B, Wilson A, Speechley W, Kuo MC (2006) Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cereb Cortex 17(4):839–848. doi:10.1093/cercor/bhk038 PubMedCrossRef Dringenberg HC, Hamze B, Wilson A, Speechley W, Kuo MC (2006) Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cereb Cortex 17(4):839–848. doi:10.​1093/​cercor/​bhk038 PubMedCrossRef
go back to reference Fiorentini A, Berardi N (1980) Perceptual learning specific for orientation and spatial frequency. Nature 287(5777):43–44PubMedCrossRef Fiorentini A, Berardi N (1980) Perceptual learning specific for orientation and spatial frequency. Nature 287(5777):43–44PubMedCrossRef
go back to reference Gaykema RP, Luiten PG, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum-diagonal band complex. J Comp Neurol 293(1):103–124PubMedCrossRef Gaykema RP, Luiten PG, Nyakas C, Traber J (1990) Cortical projection patterns of the medial septum-diagonal band complex. J Comp Neurol 293(1):103–124PubMedCrossRef
go back to reference Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19(3):679–686PubMedCrossRef Gil Z, Connors BW, Amitai Y (1997) Differential regulation of neocortical synapses by neuromodulators and activity. Neuron 19(3):679–686PubMedCrossRef
go back to reference Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31(5):681–697PubMedCrossRef Gilbert CD, Sigman M, Crist RE (2001) The neural basis of perceptual learning. Neuron 31(5):681–697PubMedCrossRef
go back to reference Girman SV, Sauve Y, Lund RD (1999) Receptive field properties of single neurons in rat primary visual cortex. J Neurophysiol 82(1):301–311PubMed Girman SV, Sauve Y, Lund RD (1999) Receptive field properties of single neurons in rat primary visual cortex. J Neurophysiol 82(1):301–311PubMed
go back to reference Gonchar Y, Burkhalter A (2003) Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J Neurosci 23(34):10904–10912PubMed Gonchar Y, Burkhalter A (2003) Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex. J Neurosci 23(34):10904–10912PubMed
go back to reference Greuel JM, Luhmann HJ, Singer W (1988) Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science 242(4875):74–77PubMedCrossRef Greuel JM, Luhmann HJ, Singer W (1988) Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science 242(4875):74–77PubMedCrossRef
go back to reference Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114. pii: nature07141PubMedCentralPubMedCrossRef Herrero JL, Roberts MJ, Delicato LS, Gieselmann MA, Dayan P, Thiele A (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454(7208):1110–1114. pii: nature07141PubMedCentralPubMedCrossRef
go back to reference Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23(3):237–256PubMedCrossRef Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23(3):237–256PubMedCrossRef
go back to reference Kimura F, Fukuda M, Tsumoto T (1999) Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur J Neurosci 11(10):3597–3609PubMedCrossRef Kimura F, Fukuda M, Tsumoto T (1999) Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur J Neurosci 11(10):3597–3609PubMedCrossRef
go back to reference Kocharyan A, Fernandes P, Tong XK, Vaucher E, Hamel E (2008) Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cerebral Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 28(2):221–231. doi:10.1038/sj.jcbfm.9600558 CrossRef Kocharyan A, Fernandes P, Tong XK, Vaucher E, Hamel E (2008) Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. J Cerebral Blood Flow Metab Off J Int Soc Cerebral Blood Flow Metab 28(2):221–231. doi:10.​1038/​sj.​jcbfm.​9600558 CrossRef
go back to reference Kosovicheva AA, Sheremata SL, Rokem A, Landau AN, Silver MA (2012) Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding. Frontiers Behav Neurosci 6:61. doi:10.3389/fnbeh.2012.00061 CrossRef Kosovicheva AA, Sheremata SL, Rokem A, Landau AN, Silver MA (2012) Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding. Frontiers Behav Neurosci 6:61. doi:10.​3389/​fnbeh.​2012.​00061 CrossRef
go back to reference Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58(6):911–924 Pii: S0896-6273(08)00378-4PubMedCentralPubMedCrossRef Kruglikov I, Rudy B (2008) Perisomatic GABA release and thalamocortical integration onto neocortical excitatory cells are regulated by neuromodulators. Neuron 58(6):911–924 Pii: S0896-6273(08)00378-4PubMedCentralPubMedCrossRef
go back to reference Laplante F, Morin Y, Quirion R, Vaucher E (2005) Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: a dual microdialysis study with functional correlates in the rat brain. Neuroscience 132(2):501–510. doi:10.1016/j.neuroscience.2004.11.059 PubMedCrossRef Laplante F, Morin Y, Quirion R, Vaucher E (2005) Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: a dual microdialysis study with functional correlates in the rat brain. Neuroscience 132(2):501–510. doi:10.​1016/​j.​neuroscience.​2004.​11.​059 PubMedCrossRef
go back to reference Lucas-Meunier E, Monier C, Amar M, Baux G, Fregnac Y, Fossier P (2009) Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex. Cereb Cortex 19(10):2411–2427. doi:10.1093/cercor/bhn258 PubMedCrossRef Lucas-Meunier E, Monier C, Amar M, Baux G, Fregnac Y, Fossier P (2009) Involvement of nicotinic and muscarinic receptors in the endogenous cholinergic modulation of the balance between excitation and inhibition in the young rat visual cortex. Cereb Cortex 19(10):2411–2427. doi:10.​1093/​cercor/​bhn258 PubMedCrossRef
go back to reference Morishita H, Miwa JM, Heintz N, Hensch TK (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330 (6008):1238–1240. doi:10.1126/science.1195320 Morishita H, Miwa JM, Heintz N, Hensch TK (2010) Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330 (6008):1238–1240. doi:10.​1126/​science.​1195320
go back to reference Oldford E, Castro-Alamancos MA (2003) Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the “barrel cortex” in vivo. Neuroscience 117(3):769–778PubMedCrossRef Oldford E, Castro-Alamancos MA (2003) Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the “barrel cortex” in vivo. Neuroscience 117(3):769–778PubMedCrossRef
go back to reference Paxinos G, Watson CR (1995) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, Sydney Paxinos G, Watson CR (1995) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, Sydney
go back to reference Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMed Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13(1):87–103PubMed
go back to reference Salgado H, Bellay T, Nichols JA, Bose M, Martinolich L, Perrotti L, Atzori M (2007) Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3 K/Ca2+ -independent and PLC/Ca2+ -dependent PKC. J Neurophysiol 98 (2):952–965. doi:10.1152/jn.00060.2007 Salgado H, Bellay T, Nichols JA, Bose M, Martinolich L, Perrotti L, Atzori M (2007) Muscarinic M2 and M1 receptors reduce GABA release by Ca2+ channel modulation through activation of PI3 K/Ca2+ -independent and PLC/Ca2+ -dependent PKC. J Neurophysiol 98 (2):952–965. doi:10.​1152/​jn.​00060.​2007
go back to reference Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48(1):98–111. doi:10.1016/j.brainresrev.2004.08.006 Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48(1):98–111. doi:10.​1016/​j.​brainresrev.​2004.​08.​006
go back to reference Sasaki Y, Nanez JE, Watanabe T (2010) Advances in visual perceptual learning and plasticity. Nat Rev Neurosci 11 (1):53–60. doi:10.1038/nrn2737 Sasaki Y, Nanez JE, Watanabe T (2010) Advances in visual perceptual learning and plasticity. Nat Rev Neurosci 11 (1):53–60. doi:10.​1038/​nrn2737
go back to reference Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32(47):16602–16615. doi:10.1523/JNEUROSCI.0554-12.2012 PubMedCrossRef Thiele A, Herrero JL, Distler C, Hoffmann KP (2012) Contribution of cholinergic and GABAergic mechanisms to direction tuning, discriminability, response reliability, and neuronal rate correlations in macaque middle temporal area. J Neurosci 32(47):16602–16615. doi:10.​1523/​JNEUROSCI.​0554-12.​2012 PubMedCrossRef
go back to reference Vaucher E, Borredon J, Bonvento G, Seylaz J, Lacombe P (1997) Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J Cerebral Blood Flow and Metab Off J Int Soc Cerebral Blood Flow Metab 17(6):686–694. doi:10.1097/00004647-199706000-00010 CrossRef Vaucher E, Borredon J, Bonvento G, Seylaz J, Lacombe P (1997) Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J Cerebral Blood Flow and Metab Off J Int Soc Cerebral Blood Flow Metab 17(6):686–694. doi:10.​1097/​00004647-199706000-00010 CrossRef
go back to reference Yazaki-Sugiyama Y, Kang S, Cateau H, Fukai T, Hensch TK (2009) Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462(7270):218–221. doi:10.1038/nature08485 Yazaki-Sugiyama Y, Kang S, Cateau H, Fukai T, Hensch TK (2009) Bidirectional plasticity in fast-spiking GABA circuits by visual experience. Nature 462(7270):218–221. doi:10.​1038/​nature08485
Metadata
Title
Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat
Authors
Jun Il Kang
Marianne Groleau
Florence Dotigny
Hugo Giguère
Elvire Vaucher
Publication date
01-07-2014
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 4/2014
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-013-0582-y

Other articles of this Issue 4/2014

Brain Structure and Function 4/2014 Go to the issue