Skip to main content
Top
Published in: Brain Structure and Function 6/2013

01-11-2013 | Original Article

Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes)

Authors: Joan S. Baizer, Nicholas A. Paolone, Chet C. Sherwood, Patrick R. Hof

Published in: Brain Structure and Function | Issue 6/2013

Login to get access

Abstract

Chimpanzees are one of the closest living relatives of humans. However, the cognitive and motor abilities of chimpanzees and humans are quite different. The fact that humans are habitually bipedal and chimpanzees are not implies different uses of vestibular information in the control of posture and balance. Furthermore, bipedal locomotion permits the development of fine motor skills of the hand and tool use in humans, suggesting differences between species in the structures and circuitry for manual control. Much motor behavior is mediated via cerebro-cerebellar circuits that depend on brainstem relays. In this study, we investigated the organization of the vestibular brainstem in chimpanzees to gain insight into whether these structures differ in their anatomy from humans. We identified the four nuclei of vestibular nuclear complex in the chimpanzee and also looked at several other precerebellar structures. The size and arrangement of some of these nuclei differed between chimpanzees and humans, and also displayed considerable inter-individual variation. We identified regions within the cytoarchitectonically defined medial vestibular nucleus visualized by immunoreactivity to the calcium-binding proteins calretinin and calbindin as previously shown in other species including human. We have found that the nucleus paramedianus dorsalis, which is identified in the human but not in macaque monkeys, is present in the chimpanzee brainstem. However, the arcuate nucleus, which is present in humans, was not found in chimpanzees. The present study reveals major differences in the organization of the vestibular brainstem among Old World anthropoid primate species. Furthermore, in chimpanzees, as well as humans, there is individual variability in the organization of brainstem nuclei.
Literature
go back to reference Baizer JS (2009) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 1298:46–56PubMedCrossRef Baizer JS (2009) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the vestibular and precerebellar brainstem. Brain Res 1298:46–56PubMedCrossRef
go back to reference Baizer JS, Baker JF (2005) Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 164:78–91PubMedCrossRef Baizer JS, Baker JF (2005) Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 164:78–91PubMedCrossRef
go back to reference Baizer JS, Baker JF (2006a) Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 172:103–113PubMedCrossRef Baizer JS, Baker JF (2006a) Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 172:103–113PubMedCrossRef
go back to reference Baizer JS, Baker JF (2006b) Neurochemically defined cell columns in the nucleus prepositus hypoglossi of the cat and monkey. Brain Res 1094:127–137PubMedCrossRef Baizer JS, Baker JF (2006b) Neurochemically defined cell columns in the nucleus prepositus hypoglossi of the cat and monkey. Brain Res 1094:127–137PubMedCrossRef
go back to reference Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518:872–895PubMedCrossRef Baizer JS, Broussard DM (2010) Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 518:872–895PubMedCrossRef
go back to reference Baizer JS, Baker JF, Haas K, Lima R (2007) Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 1176:45–52PubMedCrossRef Baizer JS, Baker JF, Haas K, Lima R (2007) Neurochemical organization of the nucleus paramedianus dorsalis in the human. Brain Res 1176:45–52PubMedCrossRef
go back to reference Baizer JS, Corwin WL, Baker JF (2010a) Otolith stimulation induces c-Fos expression in vestibular and precerebellar nuclei in cats and squirrel monkeys. Brain Res 1351:64–73PubMedCrossRef Baizer JS, Corwin WL, Baker JF (2010a) Otolith stimulation induces c-Fos expression in vestibular and precerebellar nuclei in cats and squirrel monkeys. Brain Res 1351:64–73PubMedCrossRef
go back to reference Baizer JS, Paolone N, Kramer V, Sherwood CC, Hof PR (2010b) Neurochemical organization of the chimpanzee vestibular brainstem. Soc Neurosci Abs 583.23/WW16 Baizer JS, Paolone N, Kramer V, Sherwood CC, Hof PR (2010b) Neurochemical organization of the chimpanzee vestibular brainstem. Soc Neurosci Abs 583.23/WW16
go back to reference Baizer JS, Paolone NA, Witelson SF (2011a) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 1382:45–56PubMedCrossRef Baizer JS, Paolone NA, Witelson SF (2011a) Nonphosphorylated neurofilament protein is expressed by scattered neurons in the human vestibular brainstem. Brain Res 1382:45–56PubMedCrossRef
go back to reference Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011b) Neurochemical and structural organization of the principal nucleus of the inferior olive in the human. Anat Rec 294:1198–1216CrossRef Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F (2011b) Neurochemical and structural organization of the principal nucleus of the inferior olive in the human. Anat Rec 294:1198–1216CrossRef
go back to reference Baizer JS, Weinstock N, Witelson SF, Sherwood CC, Hof PR (2012) The nucleus pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct. doi:10.1007/s00429-012-0403-8 Baizer JS, Weinstock N, Witelson SF, Sherwood CC, Hof PR (2012) The nucleus pararaphales in the human, chimpanzee, and macaque monkey. Brain Struct Funct. doi:10.​1007/​s00429-012-0403-8
go back to reference Bakker DA, Richmond FJ, Abrahams VC, Courville J (1985) Patterns of primary afferent termination in the external cuneate nucleus from cervical axial muscles in the cat. J Comp Neurol 241:467–479PubMedCrossRef Bakker DA, Richmond FJ, Abrahams VC, Courville J (1985) Patterns of primary afferent termination in the external cuneate nucleus from cervical axial muscles in the cat. J Comp Neurol 241:467–479PubMedCrossRef
go back to reference Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541PubMedCrossRef Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541PubMedCrossRef
go back to reference Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:13–28PubMedCrossRef Belknap DB, McCrea RA (1988) Anatomical connections of the prepositus and abducens nuclei in the squirrel monkey. J Comp Neurol 268:13–28PubMedCrossRef
go back to reference Berman A (1968) The brain stem of the cat. University of Wisconsin Press, Madison Berman A (1968) The brain stem of the cat. University of Wisconsin Press, Madison
go back to reference Boyle R (2000) Morphology of lumbar-projecting lateral vestibulospinal neurons in the brainstem and cervical spinal cord in the squirrel monkey. Arch Ital Biol 138:107–122PubMed Boyle R (2000) Morphology of lumbar-projecting lateral vestibulospinal neurons in the brainstem and cervical spinal cord in the squirrel monkey. Arch Ital Biol 138:107–122PubMed
go back to reference Boyle R, Goldberg JM, Highstein SM (1992) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. J Neurophysiol 68:471–484PubMed Boyle R, Goldberg JM, Highstein SM (1992) Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways. J Neurophysiol 68:471–484PubMed
go back to reference Brodal A (1983) The perihypoglossal nuclei in the macaque monkey and the chimpanzee. J Comp Neurol 218:257–269PubMedCrossRef Brodal A (1983) The perihypoglossal nuclei in the macaque monkey and the chimpanzee. J Comp Neurol 218:257–269PubMedCrossRef
go back to reference Brodal A, Pompeiano O (1957) The vestibular nuclei in cat. J Anat 91:438–454PubMed Brodal A, Pompeiano O (1957) The vestibular nuclei in cat. J Anat 91:438–454PubMed
go back to reference Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. Ann N Y Acad Sci 656:363–378PubMedCrossRef Büttner-Ennever JA (1992) Patterns of connectivity in the vestibular nuclei. Ann N Y Acad Sci 656:363–378PubMedCrossRef
go back to reference Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51PubMedCrossRef Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in the cat and monkey. Brain Res 278:29–51PubMedCrossRef
go back to reference Carvalho S, Biro D, Cunha E, Hockings K, McGrew W, Richmond B, Matsuzawa T (2012) Chimpanzee carrying behaviour and the origins of human bipedality. Curr Biol 22:R180PubMedCrossRef Carvalho S, Biro D, Cunha E, Hockings K, McGrew W, Richmond B, Matsuzawa T (2012) Chimpanzee carrying behaviour and the origins of human bipedality. Curr Biol 22:R180PubMedCrossRef
go back to reference Changizi MA, Shimojo S (2005) Parcellation and area–area connectivity as a function of neocortex size. Brain Behav Evol 66:88–98PubMedCrossRef Changizi MA, Shimojo S (2005) Parcellation and area–area connectivity as a function of neocortex size. Brain Behav Evol 66:88–98PubMedCrossRef
go back to reference Chen FC, Vallender EJ, Wang H, Tzeng CS, Li WH (2001) Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Hered 92:481–489PubMedCrossRef Chen FC, Vallender EJ, Wang H, Tzeng CS, Li WH (2001) Genomic divergence between human and chimpanzee estimated from large-scale alignments of genomic sequences. J Hered 92:481–489PubMedCrossRef
go back to reference Diogo R, Richmond BG, Wood B (2012) Evolution and homologies of primate and modern human hand and forearm muscles, with notes on thumb movements and tool use. J Hum Evol 63:64–78PubMedCrossRef Diogo R, Richmond BG, Wood B (2012) Evolution and homologies of primate and modern human hand and forearm muscles, with notes on thumb movements and tool use. J Hum Evol 63:64–78PubMedCrossRef
go back to reference Emmers R, Akert K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). University of Wisconsin Press, Madison Emmers R, Akert K (1963) A stereotaxic atlas of the brain of the squirrel monkey (Saimiri sciureus). University of Wisconsin Press, Madison
go back to reference Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic Press, Philadelphia, pp 863–888 Gerrits N (1990) Vestibular nuclear complex. In: The human nervous system. Academic Press, Philadelphia, pp 863–888
go back to reference Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255PubMedCrossRef Gerrits NM, Voogd J, Nas WS (1985) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255PubMedCrossRef
go back to reference Grillner S, Hongo T, Lund S (1970) The vestibulospinal tract. Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Exp Brain Res 10:94–120PubMedCrossRef Grillner S, Hongo T, Lund S (1970) The vestibulospinal tract. Effects on alpha-motoneurones in the lumbosacral spinal cord in the cat. Exp Brain Res 10:94–120PubMedCrossRef
go back to reference Gunz P, Ramsier M, Kuhrig M, Hublin JJ, Spoor F (2012) The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J Anat 220:529–543PubMedCrossRef Gunz P, Ramsier M, Kuhrig M, Hublin JJ, Spoor F (2012) The mammalian bony labyrinth reconsidered, introducing a comprehensive geometric morphometric approach. J Anat 220:529–543PubMedCrossRef
go back to reference Halasi G, Bacskai T, Matesz C (2005) Connections of the superior vestibular nucleus with the oculomotor and red nuclei in the rat: an electron microscopic study. Brain Res Bull 66:532–535PubMedCrossRef Halasi G, Bacskai T, Matesz C (2005) Connections of the superior vestibular nucleus with the oculomotor and red nuclei in the rat: an electron microscopic study. Brain Res Bull 66:532–535PubMedCrossRef
go back to reference Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12PubMed Herculano-Houzel S (2010) Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat 4:12PubMed
go back to reference Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109(Suppl 1):10661–10668PubMedCrossRef Herculano-Houzel S (2012) The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proc Natl Acad Sci USA 109(Suppl 1):10661–10668PubMedCrossRef
go back to reference Herculano-Houzel S, Kaas JH (2011) Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution. Brain Behav Evol 77:33–44PubMedCrossRef Herculano-Houzel S, Kaas JH (2011) Gorilla and orangutan brains conform to the primate cellular scaling rules: implications for human evolution. Brain Behav Evol 77:33–44PubMedCrossRef
go back to reference Herrero L, Pardoe J, Cerminara NL, Apps R (2012) Spatial localization and projection densities of brainstem mossy fibre afferents to the forelimb C1 zone of the rat cerebellum. Eur J Neurosci 35:539–549PubMedCrossRef Herrero L, Pardoe J, Cerminara NL, Apps R (2012) Spatial localization and projection densities of brainstem mossy fibre afferents to the forelimb C1 zone of the rat cerebellum. Eur J Neurosci 35:539–549PubMedCrossRef
go back to reference Highstein SM, Holstein GR (2006) The anatomy of the vestibular nuclei. Prog Brain Res 151:157–203PubMedCrossRef Highstein SM, Holstein GR (2006) The anatomy of the vestibular nuclei. Prog Brain Res 151:157–203PubMedCrossRef
go back to reference Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMedCrossRef Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMedCrossRef
go back to reference Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996) Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127PubMedCrossRef Hof PR, Ungerleider LG, Webster MJ, Gattass R, Adams MM, Sailstad CA, Morrison JH (1996) Neurofilament protein is differentially distributed in subpopulations of corticocortical projection neurons in the macaque monkey visual pathways. J Comp Neurol 376:112–127PubMedCrossRef
go back to reference Hof PR, Ungerleider LG, Adams MM, Webster MJ, Gattass R, Blumberg DM, Morrison JH (1997) Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein. Vis Neurosci 14:981–987PubMedCrossRef Hof PR, Ungerleider LG, Adams MM, Webster MJ, Gattass R, Blumberg DM, Morrison JH (1997) Callosally projecting neurons in the macaque monkey V1/V2 border are enriched in nonphosphorylated neurofilament protein. Vis Neurosci 14:981–987PubMedCrossRef
go back to reference Jeffery N, Spoor F (2006) The primate subarcuate fossa and its relationship to the semicircular canals part I: prenatal growth. J Hum Evol 51:537–549PubMedCrossRef Jeffery N, Spoor F (2006) The primate subarcuate fossa and its relationship to the semicircular canals part I: prenatal growth. J Hum Evol 51:537–549PubMedCrossRef
go back to reference Jeffery N, Ryan TM, Spoor F (2008) The primate subarcuate fossa and its relationship to the semicircular canals part II: adult interspecific variation. J Hum Evol 55:326–339PubMedCrossRef Jeffery N, Ryan TM, Spoor F (2008) The primate subarcuate fossa and its relationship to the semicircular canals part II: adult interspecific variation. J Hum Evol 55:326–339PubMedCrossRef
go back to reference Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768PubMed Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768PubMed
go back to reference Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681PubMed Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681PubMed
go back to reference Kitajima N, Sugita-Kitajima A, Bai R, Sasaki M, Sato H, Imagawa M, Kawamoto E, Suzuki M, Uchino Y (2006) Axonal pathways and projection levels of anterior semicircular canal nerve-activated vestibulospinal neurons in cats. Neurosci Lett 406:1–5PubMedCrossRef Kitajima N, Sugita-Kitajima A, Bai R, Sasaki M, Sato H, Imagawa M, Kawamoto E, Suzuki M, Uchino Y (2006) Axonal pathways and projection levels of anterior semicircular canal nerve-activated vestibulospinal neurons in cats. Neurosci Lett 406:1–5PubMedCrossRef
go back to reference Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453PubMedCrossRef Krubitzer L, Kaas J (2005) The evolution of the neocortex in mammals: how is phenotypic diversity generated? Curr Opin Neurobiol 15:444–453PubMedCrossRef
go back to reference Kushiro K, Bai R, Kitajima N, Sugita-Kitajima A, Uchino Y (2008) Properties and axonal trajectories of posterior semicircular canal nerve-activated vestibulospinal neurons. Exp Brain Res 191:257–264PubMedCrossRef Kushiro K, Bai R, Kitajima N, Sugita-Kitajima A, Uchino Y (2008) Properties and axonal trajectories of posterior semicircular canal nerve-activated vestibulospinal neurons. Exp Brain Res 191:257–264PubMedCrossRef
go back to reference LaBossiere E, Glickstein M (1976) Histological processing for the neural sciences. Charles C. Thomas, Springfield LaBossiere E, Glickstein M (1976) Histological processing for the neural sciences. Charles C. Thomas, Springfield
go back to reference Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37PubMedCrossRef Langer T, Fuchs AF, Chubb MC, Scudder CA, Lisberger SG (1985a) Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase. J Comp Neurol 235:26–37PubMedCrossRef
go back to reference Langer T, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25PubMedCrossRef Langer T, Fuchs AF, Scudder CA, Chubb MC (1985b) Afferents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25PubMedCrossRef
go back to reference MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429PubMedCrossRef MacLeod CE, Zilles K, Schleicher A, Rilling JK, Gibson KR (2003) Expansion of the neocerebellum in Hominoidea. J Hum Evol 44:401–429PubMedCrossRef
go back to reference Mitsacos A, Reisine H, Highstein SM (1983) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215:78–91PubMedCrossRef Mitsacos A, Reisine H, Highstein SM (1983) The superior vestibular nucleus: an intracellular HRP study in the cat. I. Vestibulo-ocular neurons. J Comp Neurol 215:78–91PubMedCrossRef
go back to reference Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem, 2nd edn. Karger, Basel Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem, 2nd edn. Karger, Basel
go back to reference Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego Paxinos G, Huang XF (1995) Atlas of the human brainstem. Academic Press, San Diego
go back to reference Paxinos G, Watson C (1997) The rat brain, in stereotaxic coordinates, compact, 3rd edn. Academic Press, San Diego Paxinos G, Watson C (1997) The rat brain, in stereotaxic coordinates, compact, 3rd edn. Academic Press, San Diego
go back to reference Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press/Elsevier, Amsterdam
go back to reference Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego Paxinos G, Huang XF, Toga AW (2000) The rhesus monkey brain in stereotaxic coordinates. Academic Press, San Diego
go back to reference Pompeiano O, d’Ascanio P, Centini C, Pompeiano M, Balaban E (2002) Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 114:135–155PubMedCrossRef Pompeiano O, d’Ascanio P, Centini C, Pompeiano M, Balaban E (2002) Gene expression in rat vestibular and reticular structures during and after space flight. Neuroscience 114:135–155PubMedCrossRef
go back to reference Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225(Suppl 1):E182–E191PubMedCrossRef Preuss TM (2011) The human brain: rewired and running hot. Ann N Y Acad Sci 1225(Suppl 1):E182–E191PubMedCrossRef
go back to reference Richmond BG, Jungers WL (2008) Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319:1662–1665PubMedCrossRef Richmond BG, Jungers WL (2008) Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science 319:1662–1665PubMedCrossRef
go back to reference Roste GK (1989) Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat. A retrograde WGA-HRP and fluorescent tracer study. Anat Embryol (Berl) 180:521–533CrossRef Roste GK (1989) Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat. A retrograde WGA-HRP and fluorescent tracer study. Anat Embryol (Berl) 180:521–533CrossRef
go back to reference Sadjadpour K, Brodal A (1968) The vestibular nuclei in man. A morphological study in the light of experimental findings in the cat. J Hirnforsch 10:299–323PubMed Sadjadpour K, Brodal A (1968) The vestibular nuclei in man. A morphological study in the light of experimental findings in the cat. J Hirnforsch 10:299–323PubMed
go back to reference Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MT, De Zeeuw CI (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682PubMedCrossRef Schonewille M, Luo C, Ruigrok TJ, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MT, De Zeeuw CI (2006) Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 497:670–682PubMedCrossRef
go back to reference Shrewsbury MM, Marzke MW, Linscheid RL, Reece SP (2003) Comparative morphology of the pollical distal phalanx. Am J Phys Anthropol 121:30–47PubMedCrossRef Shrewsbury MM, Marzke MW, Linscheid RL, Reece SP (2003) Comparative morphology of the pollical distal phalanx. Am J Phys Anthropol 121:30–47PubMedCrossRef
go back to reference Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171PubMedCrossRef Shu SY, Ju G, Fan LZ (1988) The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system. Neurosci Lett 85:169–171PubMedCrossRef
go back to reference Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009) Semicircular canal system in early primates. J Hum Evol 56:315–322PubMedCrossRef Silcox MT, Bloch JI, Boyer DM, Godinot M, Ryan TM, Spoor F, Walker A (2009) Semicircular canal system in early primates. J Hum Evol 56:315–322PubMedCrossRef
go back to reference Somana R, Walberg F (1980) A re-examination of the cerebellar projections from the gracile, main and external cuneate nuclei in the cat. Brain Res 186:33–42PubMedCrossRef Somana R, Walberg F (1980) A re-examination of the cerebellar projections from the gracile, main and external cuneate nuclei in the cat. Brain Res 186:33–42PubMedCrossRef
go back to reference Spoor F, Garland T Jr, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104:10808–10812PubMedCrossRef Spoor F, Garland T Jr, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104:10808–10812PubMedCrossRef
go back to reference Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland Striedter GF (2005) Principles of brain evolution. Sinauer Associates, Sunderland
go back to reference Uchino Y, Sasaki M, Sato H, Bai R, Kawamoto E (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285PubMedCrossRef Uchino Y, Sasaki M, Sato H, Bai R, Kawamoto E (2005) Otolith and canal integration on single vestibular neurons in cats. Exp Brain Res 164:271–285PubMedCrossRef
go back to reference Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288:753–775CrossRef Van der Gucht E, Youakim M, Arckens L, Hof PR, Baizer JS (2006) Variations in the structure of the prelunate gyrus in Old World monkeys. Anat Rec 288:753–775CrossRef
go back to reference Ward CV, Plavcan JM, Manthi FK (2010) Anterior dental evolution in the Australopithecus anamensis–afarensis lineage. Philos Trans R Soc Lond B Biol Sci 365:3333–3344PubMedCrossRef Ward CV, Plavcan JM, Manthi FK (2010) Anterior dental evolution in the Australopithecus anamensisafarensis lineage. Philos Trans R Soc Lond B Biol Sci 365:3333–3344PubMedCrossRef
go back to reference Witelson SF, McCulloch PB (1991) Premortem and postmortem measurement to study structure with function: a human brain collection. Schizophr Bull 17:583–591PubMedCrossRef Witelson SF, McCulloch PB (1991) Premortem and postmortem measurement to study structure with function: a human brain collection. Schizophr Bull 17:583–591PubMedCrossRef
Metadata
Title
Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes)
Authors
Joan S. Baizer
Nicholas A. Paolone
Chet C. Sherwood
Patrick R. Hof
Publication date
01-11-2013
Publisher
Springer Berlin Heidelberg
Published in
Brain Structure and Function / Issue 6/2013
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-012-0470-x

Other articles of this Issue 6/2013

Brain Structure and Function 6/2013 Go to the issue