Skip to main content
Log in

Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The cerebellar projection of the external cuneate nucleus and the adjoining rostral part of the internal cuneate nucleus were investigated by means of anterograde transport of tritiated leucine. The cuneocerebellar tract terminates as mossy fiber rosettes in the granular layer. The termination area has a more or less spherical form with its centre at the ipsilateral side. It comprises the anterior and posterior vermes bilaterally and the ipsilateral hemispheral parts of the anterior and simple lobules, the medial aspect of the ansiform lobule and the paramedian lobule. Within this area the mossy fiber terminals are arranged in continuous sagittal strips, some of them clearly separated from one another. The strips were found in the cerebellar modules A-D. Concomitant bilateral projections to several subdivisions of the inferior olive were found. Some of these provide the anatomical substrate for the simultaneous activation of a number of mossy and climbing fiber zones observed in the anterior lobe following stimulation of different forelimb nerves. No evidence was found for a termination of mossy fiber collaterals in the central cerebellar nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β:

subnucleus β

bp:

brachium pontis

CCT:

cuneocerebellar tract

CE:

nucleus cuneatus externus

cf:

climbing fiber

CI:

nucleus cuneatus internus

cr:

corpus restiforme

DAO:

dorsal accessory olive

DCN:

dorsal column nuclei

DF-SOCP:

dorsal funiculus spino-olivocerebellar pathway

dl:

dorsal lamina of the PO

dmcc:

dorso-medial cell column

DV:

nucleus vestibularis descendens

E-CCP:

exteroceptive cuneocerebellar pathway

F:

nucleus fastigii

FL:

flocculus

flm:

fasciculus longitudinalis medialis

G:

nucleus gracilis

HRP:

horseradish peroxidase

HVI:

hemisphere of lobule VI (Roman numerals)

IA:

nucleus interpositus anterior

IP:

nucleus interpositus posterior

L:

nucleus lateralis

MAO:

medial accessory olive

mf:

mossy filber

mft:

mossy fiber terminal

MV:

nucleus vestibularis medialis

PAR:

lobus paramedianus

PFLD:

dorsal paraflocculus

PFLV:

ventral paraflocculus

PH:

nucleus prepositus hypoglossi

PO:

principal olive

P-CCP:

proprioceptive cuneocerebellar pathway

rV:

ramus descendens of the nucleus trigeminus

TS:

nucleus solitarius

Vi:

pars interpolaris of the nucleus trigeminus

vl:

ventral lamina of the PO

I-X:

lobules I to X (Roman numerals)

XII:

nucleus hypoglossi (Roman numerals)

References

  • Armstrong DM, Harvey RJ, Schild RF (1974) Topographical localization in the olive-cerebellar projection; an electrophysiological study in the cat. J Comp Neurol 154: 287–302

    Google Scholar 

  • Berkley KJ, Hand PJ (1978) Projections to the inferior olive in the cat. II. Comparisons of input from the gracile, cuneate and spinal trigeminal nuclei. J Comp Neurol 180: 253–264

    Google Scholar 

  • Boesten AJP, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161: 215–238

    Google Scholar 

  • Brodal A (1940) Experimentelle Untersuchungen über die olivocerebellare Lokalisation. Z Ges Neurol Psychiat 169: 1–153

    Google Scholar 

  • Brodal A (1941) Die Verbindungen des Nucleus cuneatus externus mit dem Kleinhirn beim Kaninchen und bei der Katze. Z Ges Neurol Psychiat 171: 167–199

    Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebellar projection: A review. Adv Anat Embryol Cell Biol 64: 1–137

    Google Scholar 

  • Brodal A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91: 438–454

    Google Scholar 

  • Chambers WW, Sprague JM (1955) Functional localization in the cerebellum. II. Somatotopic organization in cortex and nuclei. Arch Neurol Psychiat (Chicago) 74: 653–680

    Google Scholar 

  • Cheek MD, Rustioni A, Trevino DL (1975) Dorsal column nuclei projections to the cerebellar cortex in cats as revealed by the use of the retrograde transport of horseradish peroxidase. J Comp Neurol 164: 31–46

    Google Scholar 

  • Chen R, Gibson AR, Houk JC, Robinson FR (1983) Distribution of terminals in the cerebellar cortex and their relative absence in the deep cerebellar nuclei from three major sources of mossy fibers in the cat. Soc Neurosci Abstr 9: 869

    Google Scholar 

  • Cooke JD, Larson B, Oscarsson O, Sjölund B (1971) Origin and termination of cuneocerebellar tract. Exp Brain 13: 339–358

    Google Scholar 

  • Cook JR, Wiesendanger M (1976) Input from trigeminal cutaneous afferents to neurones of the inferior olive in rats. Exp Brain Res 26: 193–202

    Google Scholar 

  • Courville J (1975) Distribution of olivocerebellar fibers demonstrated by a radioautographic tracing method. Brain Res 95: 253–264

    Google Scholar 

  • Courville J, Faraco-Cantin F, Marcon L (1983) Projections from the reticular formation of the medulla, the spinal trigeminal and lateral reticular nuclei to the inferior olive. Neuroscience 9: 129–139

    Google Scholar 

  • Ekerot C-F, Larson B (1972) Differential termination of the exteroceptive and proprioceptive components of the cuneocerebellar tract. Brain Res 36: 420–424

    Google Scholar 

  • Ekerot C-F, Larson B (1973) Correlation between sagittal projection zones of climbing and mossy fiber paths in cat cerebellar anterior lobe. Brain Res 64: 446–450

    Google Scholar 

  • Ekerot C-F, Larson B (1979) The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res 36: 201–217

    Google Scholar 

  • Ekerot C-F, Larson B (1980) Termination in overlapping sagittal zones in cerebellar anterior lobe of mossy and climbing fiber paths activated from dorsal funiculus. Exp Brain Res 38: 163–172

    Google Scholar 

  • Ekerot C-F, Larson B (1982) Branching of olivary axons to innervate pairs of sagittal zones in the cerebellar anterior lobe of the cat. Exp Brain Res 48: 185–198

    Google Scholar 

  • Ferraro A, Barrera SE (1935) The nuclei of the posterior funiculi in Macacus rhesus. An anatomical and experimental investigation. Arch Neurol Psychiat 33: 262–275

    Google Scholar 

  • Fry FJ, Cowan WM (1972) A study of retrograde cell degeneration in the lateral mammilary nucleus of the cat, with special reference to the role of axonal branching in the preservation of the cell. J Comp Neurol 144: 1–24

    Google Scholar 

  • Gerrits NM, Voogd J (1979) Cerebellar mossy fiber systems in the cat. Acta Morph Neerl-Scand 17: 236–237

    Google Scholar 

  • Gerrits NM, Voogd J (1981) Cerebellar efferents of the nucleus reticularis tegmenti pontis in the cat. Acta Morph Neerl-Scand 19: 56–57

    Google Scholar 

  • Gordon G, Seed WA (1961) An investigation of nucleus gracilis of the cat by antidromic stimulation. J Physiol (Lond) 155: 589–601

    Google Scholar 

  • Gould BB (1980) Organization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv Anat Embryol Cell Biol 62: 1–79

    Google Scholar 

  • Grant G (1962) Projection of the external cuneate nucleus onto the cerebellum in the cat. An experimental study using silver methods. Exp Neurol 5: 179–195

    Google Scholar 

  • Gray TS, Hazlett JC, Martin GF (1981) Organization of the projections from the gracile, medial cuneate and lateral cuneate nuclei in the North American opossum. Horseradish peroxidase study of the cells projecting to the thalamus, cerebellum and spinal cord. Brain Behav Evol 18: 140–156

    Google Scholar 

  • Groenewegen HJ, Boesten AJP, Voogd J (1975) The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat. An autoradiographic study. J Comp Neurol 162: 505–518

    Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174: 417–488

    Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts cat cerebellum. J Comp Neurol 183: 551–602

    Google Scholar 

  • Gudden B von (1882) Über die Verbindungsbahnen des Kleinhirns. Vortrag 55. Versammlung Deutscher Naturforscher

  • Haring JR, Rowinski MJ (1982) A horseradish peroxidase study of projections from the main and external cuneate nuclei to the cerebellum of the North American raccoon. J Comp Neurol 211: 363–376

    Google Scholar 

  • Ikeda M (1979) Projection from the spinal and principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184: 567–586

    Google Scholar 

  • Kawamura K, Hashikawa T (1981) Projections from the pontine nuclei proper and reticular tegmental nucleus onto the cerebellar cortex in the cat. J Comp Neurol 201: 395–413

    Google Scholar 

  • Künzle H (1975) Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp Brain Res 22: 255–266

    Google Scholar 

  • Kooy FH (1916) The inferior olive in vertebrates. Thesis; Bohn, Haarlem

    Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat: An experimental study with the method of retrograde transport of horseradish peroxidase. Exp Brain Res 31: 591–604

    Google Scholar 

  • Larsell O (1953) The cerebellum of the cat and the monkey. J Comp Neurol 99: 135–199

    Google Scholar 

  • Matsushita M, Okado N (1981) Cells of origin of brain stem afferents to lobules I and II of the cerebellar anterior lobe in the cat. Neuroscience 6: 2393–2405

    Google Scholar 

  • McDrea RA, Bishop GA, Kitai ST (1977) Electrophysiological and horseradish peroxidase studies of precerebellar afferents to the nucleus interpositus anterior. II. Mossy fiber system. Brain Res 122: 215–228

    Google Scholar 

  • Monakow C von (1885) Neue experimentelle Beiträge zur Anatomie der Schleife. Zbl Neurol 4: 265–268

    Google Scholar 

  • Nas WSC, Gerrits NM, Voogd J (1981) The cuneocerebellar projection in the cat. Acta Morphol Neerl-Scand 19: 95–96

    Google Scholar 

  • Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Somatosensory systems. Springer, Berlin Heidelberg New York (Handbook of sensory physiology, Vol II, pp 339–380)

    Google Scholar 

  • Rinvik E, Walberg F (1975) Studies on the cerebellar projections from the main and external cuneate nucleus in the cat, by means of retrograde transport of HRP. Brain Res 95: 371–382

    Google Scholar 

  • Russchen FT, Groenewegen HJ, Voogd J (1976) Reticulocerebellar fibers in the cat. An autoradiographic study. Acta Morphol Neerl-Scand 14: 245–246

    Google Scholar 

  • Saint-Cyr JJ, Courville J (1979) Projection from the vestibular nuclei to the inferior olive in the cat: An autoradiographic and horseradish peroxidase study. Brain Res 165: 189–200

    Google Scholar 

  • Somana R, Kotchabhakdi N, Walberg F (1980) Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res 38: 57–64

    Google Scholar 

  • Somana R, Walberg F (1980) A re-examination of the cerebellar projections from the gracile, main and external cuneate nuclei in the cat. Brain Res 186: 33–42

    Google Scholar 

  • Steward WA, King RB (1963) Fibre projections from the nucleus caudalis of the spinal trigeminal nucleus. J Comp Neurol 121: 271–286

    Google Scholar 

  • Verhaart WJC (1964) A stereotactic atlas of the brain stem of the cat. Van Gorkum, Assen

    Google Scholar 

  • Voogd J (1964) The cerebellum of the cat; structure and fiber connections. Thesis; Van Gorkum, Assen

    Google Scholar 

  • Voogd J (1969) The importance of fibre connections in the comparative anatomy of the mammalian cerebellum. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA/ERF, Chicago, pp 493–541

    Google Scholar 

  • Voogd J (1983) Anatomical evidence for a cortical “x” zone in the cerebellum of the cat. Soc Neurosci Abstr 9: 1091

    Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico-nuclear fibers in the cerebellum: A review. In: Courville J et al. (eds) The olivary nucleus. Anatomy and physiology. Raven Press, New York, pp 207–234

    Google Scholar 

  • Voogd J, Broere G, van Rossum J (1969) The medio-lateral distribution of the spinocerebellar projection in the anterior lobe and the simple lobule in the cat and a comparison with other afferent fibre systems. Psychiat Neurol Neurochir 72: 137–151

    Google Scholar 

  • Voogd J, Feirabend HKP (1981) Classical methods in neuroanatomy. In: Lahue R (ed) Methods in neurobiology, Vol 2. Plenum Press, New York, pp 301–364

    Google Scholar 

  • Walberg F (1982) Olivary afferents from the brain stem reticular formation. Exp Brain Res 47: 130–136

    Google Scholar 

  • Wilson VJ, Maeda M, Franck JI, Shimazu H (1976) Mossy fiber neck and second-order labyrinthine projections to cat flocculus. J Neurophysiol 39: 301–310

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerrits, N.M., Voogd, J. & Nas, W.S.C. Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57, 239–255 (1985). https://doi.org/10.1007/BF00236529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00236529

Key words

Navigation