Skip to main content
Top
Published in: Brain Structure and Function 1/2007

01-07-2007 | Original Article

Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence

Authors: Ingeborg Bolstad, Trygve B. Leergaard, Jan G. Bjaalie

Published in: Brain Structure and Function | Issue 1/2007

Login to get access

Abstract

The cerebral cortex conveys major input to the granule cell layer of the cerebellar hemispheres by way of the pontine nuclei. Cerebrocortical projections terminate in multiple, widely distributed clusters in the pontine nuclei. This clustered organization is thought to provide the transition between the different organizational principles of the cerebrum and cerebellum, and indicates that parallel processing occurs at multiple sites in the pontine nuclei. At a cellular level, however, it is unknown whether individual cerebropontine neurons target pontocerebellar cells located in different clusters or not. We have employed anterograde axonal tracing and 3D computerized reconstruction techniques to characterize the branching pattern and morphology of individual cerebropontine axons from the primary somatosensory cortex (SI). Our findings show that 43% of the cerebrobulbar fibers arising from SI whisker representations provide two or three fibers entering the pontine nuclei, whereas 39% have only one fiber, and the remaining 18% do not project to the pontine nuclei. Thus, it appears that a majority of cerebropontine axons originating in SI whisker representations diverge to contact multiple, separated pontocerebellar cells. Further, 84% of the somatosensory cerebropontine fibers are collateral branches from cerebrobulbar and/or cerebrospinal parent fibers, while 16% are direct cerebropontine projections without a further descending projection. A range of thicknesses of the fibers entering the pontine nuclei were observed, with collaterals of corticobulbar fibers having the smallest diameter. Taken together, these findings may be related to previously described separate cerebropontine transmission lines with different properties.
Literature
go back to reference Allen GI, Korn H, Oshima T (1969) Monosynaptic pyramidal activation of pontine nuclei cells projecting to the cerebellum. Brain Res 15:272–275PubMedCrossRef Allen GI, Korn H, Oshima T (1969) Monosynaptic pyramidal activation of pontine nuclei cells projecting to the cerebellum. Brain Res 15:272–275PubMedCrossRef
go back to reference Allen GI, Korn H, Oshima T, Toyama K (1975) The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. II. Responses of single cells in the pontine nuclei. Exp Brain Res 24:15–36PubMed Allen GI, Korn H, Oshima T, Toyama K (1975) The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. II. Responses of single cells in the pontine nuclei. Exp Brain Res 24:15–36PubMed
go back to reference Bjaalie JG, Leergaard TB (2000) Functions of the pontine nuclei in cerebro-cerebellar communication. Trends Neurosci 23:152–153PubMedCrossRef Bjaalie JG, Leergaard TB (2000) Functions of the pontine nuclei in cerebro-cerebellar communication. Trends Neurosci 23:152–153PubMedCrossRef
go back to reference Bjaalie JG, Leergaard TB (2006) Three-dimensional computerized reconstruction from serial sections: cell populations, regions, and whole brain. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing: molecules, neurons, and systems. Springer Science+Business Media, New York, pp 530–565CrossRef Bjaalie JG, Leergaard TB (2006) Three-dimensional computerized reconstruction from serial sections: cell populations, regions, and whole brain. In: Zaborszky L, Wouterlood FG, Lanciego JL (eds) Neuroanatomical tract tracing: molecules, neurons, and systems. Springer Science+Business Media, New York, pp 530–565CrossRef
go back to reference Bjaalie JG, Leergaard TB, Lillehaug S, Odeh F, Moene IA, Kjode JO, Darin D (2005) Database and tools for analysis of topographic organization and map transformations in major projection systems of the brain. Neuroscience 136:681–695PubMedCrossRef Bjaalie JG, Leergaard TB, Lillehaug S, Odeh F, Moene IA, Kjode JO, Darin D (2005) Database and tools for analysis of topographic organization and map transformations in major projection systems of the brain. Neuroscience 136:681–695PubMedCrossRef
go back to reference Bower JM, Kassel J (1990) Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol 302:768–778PubMedCrossRef Bower JM, Kassel J (1990) Variability in tactile projection patterns to cerebellar folia crus IIA of the Norway rat. J Comp Neurol 302:768–778PubMedCrossRef
go back to reference Bower JM, Beermann DH, Gibson JM, Shambes GM, Welker W (1981) Principles of organization of a cerebro-cerebellar circuit. Micromapping the projections from cerebral (SI) to cerebellar (granule cell layer) tactile areas of rats. Brain Behav Evol 18:1–18PubMed Bower JM, Beermann DH, Gibson JM, Shambes GM, Welker W (1981) Principles of organization of a cerebro-cerebellar circuit. Micromapping the projections from cerebral (SI) to cerebellar (granule cell layer) tactile areas of rats. Brain Behav Evol 18:1–18PubMed
go back to reference Brevik A, Leergaard TB, Svanevik M, Bjaalie JG (2001) Three-dimensional computerised atlas of the rat brain stem precerebellar system: approaches for mapping, visualization, and comparison of spatial distribution data. Anat Embryol 204:319–332PubMedCrossRef Brevik A, Leergaard TB, Svanevik M, Bjaalie JG (2001) Three-dimensional computerised atlas of the rat brain stem precerebellar system: approaches for mapping, visualization, and comparison of spatial distribution data. Anat Embryol 204:319–332PubMedCrossRef
go back to reference Brodal P (1982) The cerebropontocerebellar pathway: salient features of its organization. In: Chan-Palay V, Palay S (eds) The cerebellum: new vistas. Exp Brain Res, suppl 6. Springer, Berlin, pp 108–132 Brodal P (1982) The cerebropontocerebellar pathway: salient features of its organization. In: Chan-Palay V, Palay S (eds) The cerebellum: new vistas. Exp Brain Res, suppl 6. Springer, Berlin, pp 108–132
go back to reference Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249PubMed Brodal P, Bjaalie JG (1997) Salient anatomic features of the cortico-ponto-cerebellar pathway. Prog Brain Res 114:227–249PubMed
go back to reference Brown LL (1992) Somatotopic organization in rat striatum: evidence for a combinational map. Proc Natl Acad Sci USA 89:7403–7407PubMedCrossRef Brown LL (1992) Somatotopic organization in rat striatum: evidence for a combinational map. Proc Natl Acad Sci USA 89:7403–7407PubMedCrossRef
go back to reference Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213PubMedCrossRef Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213PubMedCrossRef
go back to reference Endo K, Araki T, Yagi N (1973) The distribution and pattern of axon branching of pyramidal tract cells. Brain Res 57:484–491PubMedCrossRef Endo K, Araki T, Yagi N (1973) The distribution and pattern of axon branching of pyramidal tract cells. Brain Res 57:484–491PubMedCrossRef
go back to reference Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538:351–357PubMedCrossRef Fabri M, Burton H (1991) Topography of connections between primary somatosensory cortex and posterior complex in rat: a multiple fluorescent tracer study. Brain Res 538:351–357PubMedCrossRef
go back to reference Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRef Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254PubMedCrossRef
go back to reference Hartmann MJ, Bower JM (2001) Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci 21:3549–3563PubMed Hartmann MJ, Bower JM (2001) Tactile responses in the granule cell layer of cerebellar folium crus IIa of freely behaving rats. J Neurosci 21:3549–3563PubMed
go back to reference Hoffer ZS, Arantes HB, Roth RL, Alloway KD (2005) Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 488:82–100PubMedCrossRef Hoffer ZS, Arantes HB, Roth RL, Alloway KD (2005) Functional circuits mediating sensorimotor integration: quantitative comparisons of projections from rodent barrel cortex to primary motor cortex, neostriatum, superior colliculus, and the pons. J Comp Neurol 488:82–100PubMedCrossRef
go back to reference Holländer H, Brodal P, Walberg F (1968) Electronmicroscopic observations on the structure of the pontine nuclei and the mode of termination of the corticopontine fibres. An experimental study in the cat. Exp Brain Res 7:95–110 Holländer H, Brodal P, Walberg F (1968) Electronmicroscopic observations on the structure of the pontine nuclei and the mode of termination of the corticopontine fibres. An experimental study in the cat. Exp Brain Res 7:95–110
go back to reference Houk JC, Mugnaini E (2003) Cerebellum. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (eds) Fundamental neuroscience. Academic, San Diego, pp 841–872 Houk JC, Mugnaini E (2003) Cerebellum. In: Squire LR, Bloom FE, McConnell SK, Roberts JL, Spitzer NC, Zigmond MJ (eds) Fundamental neuroscience. Academic, San Diego, pp 841–872
go back to reference Ito M (2005) Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res 148:95–109PubMedCrossRef Ito M (2005) Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res 148:95–109PubMedCrossRef
go back to reference Lanciego JL, Wouterlood FG (1994) Dual anterograde axonal tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Neuroscience Protocols 94-050-06-01-13 Lanciego JL, Wouterlood FG (1994) Dual anterograde axonal tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L) and biotinylated dextran amine (BDA). Neuroscience Protocols 94-050-06-01-13
go back to reference Leergaard TB (2003) Clustered and laminar topographic patterns in rat cerebro-pontine pathways. Anat Embryol 206:149–162PubMed Leergaard TB (2003) Clustered and laminar topographic patterns in rat cerebro-pontine pathways. Anat Embryol 206:149–162PubMed
go back to reference Leergaard TB, Alloway KD, Mutic JJ, Bjaalie JG (2000a) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20:8474–8484PubMed Leergaard TB, Alloway KD, Mutic JJ, Bjaalie JG (2000a) Three-dimensional topography of corticopontine projections from rat barrel cortex: correlations with corticostriatal organization. J Neurosci 20:8474–8484PubMed
go back to reference Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, Vos BP, De Schutter E, Bower JM, Bjaalie JG (2000b) Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 422:246–266PubMedCrossRef Leergaard TB, Lyngstad KA, Thompson JH, Taeymans S, Vos BP, De Schutter E, Bower JM, Bjaalie JG (2000b) Rat somatosensory cerebropontocerebellar pathways: spatial relationships of the somatotopic map of the primary somatosensory cortex are preserved in a three-dimensional clustered pontine map. J Comp Neurol 422:246–266PubMedCrossRef
go back to reference Leergaard TB, Alloway KD, Pham TA, Bolstad I, Hoffer ZS, Pettersen C, Bjaalie JG (2004) Three-dimensional topography of corticopontine projections from rat sensorimotor cortex: comparisons with corticostriatal projections reveal diverse integrative organization. J Comp Neurol 478:306–322PubMedCrossRef Leergaard TB, Alloway KD, Pham TA, Bolstad I, Hoffer ZS, Pettersen C, Bjaalie JG (2004) Three-dimensional topography of corticopontine projections from rat sensorimotor cortex: comparisons with corticostriatal projections reveal diverse integrative organization. J Comp Neurol 478:306–322PubMedCrossRef
go back to reference Leergaard TB, Lillehaug S, De Schutter E, Bower JM, Bjaalie JG (2006) Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres. Eur J Neurosci 24:2801–2812PubMedCrossRef Leergaard TB, Lillehaug S, De Schutter E, Bower JM, Bjaalie JG (2006) Topographical organization of pathways from somatosensory cortex through the pontine nuclei to tactile regions of the rat cerebellar hemispheres. Eur J Neurosci 24:2801–2812PubMedCrossRef
go back to reference Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853PubMed Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853PubMed
go back to reference Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci 17:101–104PubMedCrossRef Malach R (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci 17:101–104PubMedCrossRef
go back to reference Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201PubMedCrossRef Mihailoff GA, McArdle CB, Adams CE (1981) The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and Golgi studies. J Comp Neurol 195:181–201PubMedCrossRef
go back to reference Möck M, Schwarz C, Thier P (1997) Electrophysiological properties of rat pontine nuclei neurons in vitro II. Postsynaptic potentials. J Neurophysiol 78:3338–3350PubMed Möck M, Schwarz C, Thier P (1997) Electrophysiological properties of rat pontine nuclei neurons in vitro II. Postsynaptic potentials. J Neurophysiol 78:3338–3350PubMed
go back to reference Moene IA, Subramaniam S, Darin D, Leergaard TB, Bjaalie JG (2007) Towards a workbench for rodent brain image data: systems architecture and design. Neuroinformatics 5:35–58PubMed Moene IA, Subramaniam S, Darin D, Leergaard TB, Bjaalie JG (2007) Towards a workbench for rodent brain image data: systems architecture and design. Neuroinformatics 5:35–58PubMed
go back to reference Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25:5680–5690PubMedCrossRef Odeh F, Ackerley R, Bjaalie JG, Apps R (2005) Pontine maps linking somatosensory and cerebellar cortices are in register with climbing fiber somatotopy. J Neurosci 25:5680–5690PubMedCrossRef
go back to reference Oshima T (1979) The microphysiology of pontine nulei in the cat concerning the concept of internal feedback. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam, pp 125–139 Oshima T (1979) The microphysiology of pontine nulei in the cat concerning the concept of internal feedback. In: Massion J, Sasaki K (eds) Cerebro-cerebellar interactions. Elsevier, Amsterdam, pp 125–139
go back to reference Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 729–757 Palomero-Gallagher N, Zilles K (2004) Isocortex. In: Paxinos G (ed) The rat nervous system. Elsevier Academic Press, San Diego, pp 729–757
go back to reference Pijpers A, Ruigrok TJ (2006) Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J Comp Neurol 496:513–528PubMedCrossRef Pijpers A, Ruigrok TJ (2006) Organization of pontocerebellar projections to identified climbing fiber zones in the rat. J Comp Neurol 496:513–528PubMedCrossRef
go back to reference Ramón y Cajal S (1952) Histologie du Système Nerveux d l’Homme et des Vertébrés. Instituto Ramón y Cajal, Madrid Ramón y Cajal S (1952) Histologie du Système Nerveux d l’Homme et des Vertébrés. Instituto Ramón y Cajal, Madrid
go back to reference Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37PubMedCrossRef Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103:23–37PubMedCrossRef
go back to reference Rüegg DG, Sequin JJ, Wiesendanger M (1977) Effects of electrical stimulation of somatosensory and motor areas of the cerebral cortex on neurons of the pontine nuclei in squirrel monkeys. Neuroscience 2:923–927CrossRef Rüegg DG, Sequin JJ, Wiesendanger M (1977) Effects of electrical stimulation of somatosensory and motor areas of the cerebral cortex on neurons of the pontine nuclei in squirrel monkeys. Neuroscience 2:923–927CrossRef
go back to reference Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMed Schmahmann JD (2004) Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378PubMed
go back to reference Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60PubMed Schmahmann JD, Pandya DN (1997) The cerebrocerebellar system. Int Rev Neurobiol 41:31–60PubMed
go back to reference Schwarz C, Möck M (2001) Spatial arrangement of cerebro-pontine terminals. J Comp Neurol 435:418–432PubMedCrossRef Schwarz C, Möck M (2001) Spatial arrangement of cerebro-pontine terminals. J Comp Neurol 435:418–432PubMedCrossRef
go back to reference Schwarz C, Thier P (1995) Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489PubMed Schwarz C, Thier P (1995) Modular organization of the pontine nuclei: dendritic fields of identified pontine projection neurons in the rat respect the borders of cortical afferent fields. J Neurosci 15:3475–3489PubMed
go back to reference Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22:443–451PubMedCrossRef Schwarz C, Thier P (1999) Binding of signals relevant for action: towards a hypothesis of the functional role of the pontine nuclei. Trends Neurosci 22:443–451PubMedCrossRef
go back to reference Shambes GM, Gibson JM, Welker W (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15:94–140PubMed Shambes GM, Gibson JM, Welker W (1978) Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain Behav Evol 15:94–140PubMed
go back to reference Shumway CA, Morissette J, Gruen P, Bower JM (1999) Plasticity in cerebellar tactile maps in the adult rat. J Comp Neurol 413:583–592PubMedCrossRef Shumway CA, Morissette J, Gruen P, Bower JM (1999) Plasticity in cerebellar tactile maps in the adult rat. J Comp Neurol 413:583–592PubMedCrossRef
go back to reference Stanfield BB, O’Leary DD (1985) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238:236–248PubMedCrossRef Stanfield BB, O’Leary DD (1985) The transient corticospinal projection from the occipital cortex during the postnatal development of the rat. J Comp Neurol 238:236–248PubMedCrossRef
go back to reference Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017PubMed Stein JF, Glickstein M (1992) Role of the cerebellum in visual guidance of movement. Physiol Rev 72:967–1017PubMed
go back to reference Tomasch J (1968) The overall information carrying capacity of the major afferent and efferent cerebellar cell and fiber systems. Confin Neurol 30:359–367PubMedCrossRef Tomasch J (1968) The overall information carrying capacity of the major afferent and efferent cerebellar cell and fiber systems. Confin Neurol 30:359–367PubMedCrossRef
go back to reference Tomasch J (1969) The numerical capacity of the human cortico-ponto-cerebellar system. Brain Res 13:476–484PubMedCrossRef Tomasch J (1969) The numerical capacity of the human cortico-ponto-cerebellar system. Brain Res 13:476–484PubMedCrossRef
go back to reference Torigoe Y, Blanks RHI, Precht W (1986) Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidate. J Comp Neurol 243:88–105PubMedCrossRef Torigoe Y, Blanks RHI, Precht W (1986) Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. II. Subcortical afferents demonstrated by the retrograde transport of horseradish peroxidate. J Comp Neurol 243:88–105PubMedCrossRef
go back to reference Ugolini G, Kuypers HG (1986) Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res 365:211–227PubMedCrossRef Ugolini G, Kuypers HG (1986) Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res 365:211–227PubMedCrossRef
go back to reference Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–254PubMedCrossRef Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–254PubMedCrossRef
go back to reference Voogd J (1995) Cerebellum. In: Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (eds) Gray’s anatomy. Churchill Livingstone, New York, pp 1027–1065 Voogd J (1995) Cerebellum. In: Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ (eds) Gray’s anatomy. Churchill Livingstone, New York, pp 1027–1065
go back to reference Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res 26:259–275PubMed Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res 26:259–275PubMed
go back to reference Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242PubMedCrossRef Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17:205–242PubMedCrossRef
Metadata
Title
Branching of individual somatosensory cerebropontine axons in rat: evidence of divergence
Authors
Ingeborg Bolstad
Trygve B. Leergaard
Jan G. Bjaalie
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1/2007
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-007-0145-1

Other articles of this Issue 1/2007

Brain Structure and Function 1/2007 Go to the issue

Editorial

Prologue