Skip to main content
Top
Published in: Brain Structure and Function 1/2007

01-07-2007 | Original Article

Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human

Authors: Rosalind S. E. Carney, Irina Bystron, Guillermina López-Bendito, Zoltán Molnár

Published in: Brain Structure and Function | Issue 1/2007

Login to get access

Abstract

Embryonic germinal zones of the dorsal and ventral telencephalon generate cortical neurons during the final week of gestation in rodent and during several months in human. Whereas the vast majority of cortical interneurons originate from the ventral telencephalon, excitatory neurons are locally generated within the germinal zone of the dorsal telencephalon, the future cerebral cortex, itself. However, a number of studies have described proliferating cells external to the ventricular and subventricular germinal zones in the developing dorsal telencephalon. In this study, we performed a comprehensive cell density analysis of such ‘extra-ventricular proliferating cells’ (EVPCs) during corticogenesis in rat and human using a mitotic marker anti-phospho-histone H3. Subsequently, we performed double-labelling studies with other mitotic and cell type specific markers to undertake phenotypic characterisation of EVPCs. Our findings show: (1) the densities of extra-ventricular H3-positive (H3+) cells were surprisingly similar in preplate stage rat and human; (2) extra-ventricular proliferation continues during mid-and late corticogenesis in rat and in early fetal human cortex; and (3) extra-ventricular cells appear to be mitotic precursors as they are not immunoreactive for a panel of early post-mitotic and cell type-specific markers, although (4) a subset of EVPCs are proliferating microglia. These data suggest that some aspects of early corticogenesis are conserved between rodent and human despite marked differences in the duration of neurogenesis and the anatomical organisation of the developing cerebral cortex.
Appendix
Available only for authorised users
Literature
go back to reference Altman J, Bayer SA (2002) Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex. J Neurocytol 31:613–632PubMedCrossRef Altman J, Bayer SA (2002) Regional differences in the stratified transitional field and the honeycomb matrix of the developing human cerebral cortex. J Neurocytol 31:613–632PubMedCrossRef
go back to reference Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363PubMed Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JL (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:353–363PubMed
go back to reference Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N (1998) Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 814:13–25PubMedCrossRef Andjelkovic AV, Nikolic B, Pachter JS, Zecevic N (1998) Macrophages/microglial cells in human central nervous system during development: an immunohistochemical study. Brain Res 814:13–25PubMedCrossRef
go back to reference Angevine J, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768PubMedCrossRef Angevine J, Sidman RL (1961) Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature 192:766–768PubMedCrossRef
go back to reference Bayer SA, Altman J (1991) Neocortical development Bayer SA, Altman J (1991) Neocortical development
go back to reference Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709PubMed Berry M, Rogers AW (1965) The migration of neuroblasts in the developing cerebral cortex. J Anat 99:691–709PubMed
go back to reference Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012PubMedCrossRef Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012PubMedCrossRef
go back to reference Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262CrossRef Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–262CrossRef
go back to reference Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15:63–78PubMedCrossRef Bulfone A, Smiga SM, Shimamura K, Peterson A, Puelles L, Rubenstein JL (1995) T-brain-1: a homolog of Brachyury whose expression defines molecularly distinct domains within the cerebral cortex. Neuron 15:63–78PubMedCrossRef
go back to reference Bystron IP, Smirnov EB, Otellin VA, Wierzba-Bobrowicz T, Dymecki J. (2002) Suspensional reaggregates of human foetal neocortex and tegmentum as objects of neurotransplantation. Folia Neuropathol 40(2):75–85PubMed Bystron IP, Smirnov EB, Otellin VA, Wierzba-Bobrowicz T, Dymecki J. (2002) Suspensional reaggregates of human foetal neocortex and tegmentum as objects of neurotransplantation. Folia Neuropathol 40(2):75–85PubMed
go back to reference Bystron I, Molnár Z, Otellin V, Blakemore C (2005a) Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J Neurosci 25:2781–2792PubMedCrossRef Bystron I, Molnár Z, Otellin V, Blakemore C (2005a) Tangential networks of precocious neurons and early axonal outgrowth in the embryonic human forebrain. J Neurosci 25:2781–2792PubMedCrossRef
go back to reference Bystron I, Hevner RF, Blakemore C (2005b) The columnar organization of the neuroepithelium in human cortical primordium. Soc Neurosci Abstr P.144.3 Bystron I, Hevner RF, Blakemore C (2005b) The columnar organization of the neuroepithelium in human cortical primordium. Soc Neurosci Abstr P.144.3
go back to reference Bystron I, Rakic P, Molnar Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886PubMedCrossRef Bystron I, Rakic P, Molnar Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886PubMedCrossRef
go back to reference Carney RSE, Alfonso B, Cohen D, Dai H, Nery S, Stoica B, Slotkin J, Bregman BS, Fishell G, Corbin JG (2006) Cell migration along the lateral cortical stream to developing basal telencephalic limbic structures. J Neurosci 26:11562–11574PubMedCrossRef Carney RSE, Alfonso B, Cohen D, Dai H, Nery S, Stoica B, Slotkin J, Bregman BS, Fishell G, Corbin JG (2006) Cell migration along the lateral cortical stream to developing basal telencephalic limbic structures. J Neurosci 26:11562–11574PubMedCrossRef
go back to reference Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182PubMedCrossRef Corbin JG, Nery S, Fishell G (2001) Telencephalic cells take a tangent: non-radial migration in the mammalian forebrain. Nat Neurosci 4(Suppl):1177–1182PubMedCrossRef
go back to reference Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B (2003) Dynamics of microglia in the developing rat brain. J Comp Neurol 458:144–157PubMedCrossRef Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B (2003) Dynamics of microglia in the developing rat brain. J Comp Neurol 458:144–157PubMedCrossRef
go back to reference DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalisation studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289PubMedCrossRef DeFelipe J (1993) Neocortical neuronal diversity: chemical heterogeneity revealed by colocalisation studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. Cereb Cortex 3:273–289PubMedCrossRef
go back to reference Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251PubMedCrossRef Englund C, Fink A, Lau C, Pham D, Daza RA, Bulfone A, Kowalczyk T, Hevner RF (2005) Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci 25:247–251PubMedCrossRef
go back to reference Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129:455–466PubMed Estivill-Torrus G, Pearson H, van Heyningen V, Price DJ, Rashbass P (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129:455–466PubMed
go back to reference Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 26(3):1045–1056PubMedCrossRef Gal JS, Morozov YM, Ayoub AE, Chatterjee M, Rakic P, Haydar TF (2006) Molecular and morphological heterogeneity of neural precursors in the mouse neocortical proliferative zones. J Neurosci. 26(3):1045–1056PubMedCrossRef
go back to reference Götz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–788PubMedCrossRef Götz M, Hartfuss E, Malatesta P (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res Bull 57:777–788PubMedCrossRef
go back to reference Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201PubMedCrossRef Haubensak W, Attardo A, Denk W, Huttner WB (2004) Neurons arise in the basal neuroepithelium of the early mammalian telencephalon: a major site of neurogenesis. Proc Natl Acad Sci USA 101:3196–3201PubMedCrossRef
go back to reference Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res Dev Brain Res 141:39–53PubMedCrossRef Hevner RF, Neogi T, Englund C, Daza RA, Fink A (2003) Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res Dev Brain Res 141:39–53PubMedCrossRef
go back to reference Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedCrossRef Hevner RF, Shi L, Justice N, Hsueh Y, Sheng M, Smiga S, Bulfone A, Goffinet AM, Campagnoni AT, Rubenstein JL (2001) Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29:353–366PubMedCrossRef
go back to reference Hevner RF, Hodge RD, Daza RA, Englund C. (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233PubMedCrossRef Hevner RF, Hodge RD, Daza RA, Englund C. (2006) Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex, cerebellum, and adult hippocampus. Neurosci Res 55(3):223–233PubMedCrossRef
go back to reference Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat 115:226–264PubMedCrossRef Hinds JW, Ruffett TL (1971) Cell proliferation in the neural tube: an electron microscopic and golgi analysis in the mouse cerebral vesicle. Z Zellforsch Mikrosk Anat 115:226–264PubMedCrossRef
go back to reference Howard B, Chen Y, Zecevic N (2006) Cortical progenitor cells in the developing human telencephalon. Glia 53:57–66PubMedCrossRef Howard B, Chen Y, Zecevic N (2006) Cortical progenitor cells in the developing human telencephalon. Glia 53:57–66PubMedCrossRef
go back to reference Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci USA 96:4639–4644PubMedCrossRef Iacopetti P, Michelini M, Stuckmann I, Oback B, Aaku-Saraste E, Huttner WB (1999) Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc Natl Acad Sci USA 96:4639–4644PubMedCrossRef
go back to reference Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z (2002) Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–5052PubMed Jones L, López-Bendito G, Gruss P, Stoykova A, Molnár Z (2002) Pax6 is required for the normal development of the forebrain axonal connections. Development 129:5041–5052PubMed
go back to reference López-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cerebral Cortex 14(10): 1122–1133PubMedCrossRef López-Bendito G, Sturgess K, Erdelyi F, Szabo G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cerebral Cortex 14(10): 1122–1133PubMedCrossRef
go back to reference Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia 23:191–199PubMedCrossRef Kamei Y, Inagaki N, Nishizawa M, Tsutsumi O, Taketani Y, Inagaki M (1998) Visualization of mitotic radial glial lineage cells in the developing rat brain by Cdc2 kinase-phosphorylated vimentin. Glia 23:191–199PubMedCrossRef
go back to reference Kendler A, Golden JA (1996) Progenitor cell proliferation outside the ventricular and subventricular zones during human brain development. J Neuropathol Exp Neurol 55:1253–1258PubMed Kendler A, Golden JA (1996) Progenitor cell proliferation outside the ventricular and subventricular zones during human brain development. J Neuropathol Exp Neurol 55:1253–1258PubMed
go back to reference Kessaris N., Fogarty M., Iannarelli P., Grist W., Wegner M, Richardson W.D. (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179PubMedCrossRef Kessaris N., Fogarty M., Iannarelli P., Grist W., Wegner M, Richardson W.D. (2006) Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat Neurosci 9:173–179PubMedCrossRef
go back to reference Kohtz JD, Lee HY, Gaiano N, Segal J, Ng E, Larson T, Baker DP, Garber EA, Williams KP, Fishell G (2001) N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128:2351–2363PubMed Kohtz JD, Lee HY, Gaiano N, Segal J, Ng E, Larson T, Baker DP, Garber EA, Williams KP, Fishell G (2001) N-terminal fatty-acylation of sonic hedgehog enhances the induction of rodent ventral forebrain neurons. Development 128:2351–2363PubMed
go back to reference Kornack DR, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246PubMedCrossRef Kornack DR, Rakic P (1998) Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proc Natl Acad Sci USA 95:1242–1246PubMedCrossRef
go back to reference Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470PubMedCrossRef Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470PubMedCrossRef
go back to reference Lee MK, Rebhun LI, Frankfurter A (1990) Posttranslational modification of class III beta-tubulin. Proc Natl Acad Sci USA 87:7195–7199PubMedCrossRef Lee MK, Rebhun LI, Frankfurter A (1990) Posttranslational modification of class III beta-tubulin. Proc Natl Acad Sci USA 87:7195–7199PubMedCrossRef
go back to reference Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649PubMedCrossRef Letinic K, Zoncu R, Rakic P (2002) Origin of GABAergic neurons in the human neocortex. Nature 417:645–649PubMedCrossRef
go back to reference Levers TE, Edgar JM, Price DJ (2001) The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol 48:265–277PubMedCrossRef Levers TE, Edgar JM, Price DJ (2001) The fates of cells generated at the end of neurogenesis in developing mouse cortex. J Neurobiol 48:265–277PubMedCrossRef
go back to reference Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005b) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364PubMedCrossRef Lukaszewicz A, Savatier P, Cortay V, Giroud P, Huissoud C, Berland M, Kennedy H, Dehay C (2005b) G1 phase regulation, area-specific cell cycle control, and cytoarchitectonics in the primate cortex. Neuron 47:353–364PubMedCrossRef
go back to reference Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075PubMed Luskin MB, Shatz CJ (1985) Studies of the earliest generated cells of the cat’s visual cortex: cogeneration of subplate and marginal zones. J Neurosci 5:1062–1075PubMed
go back to reference Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263PubMed Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263PubMed
go back to reference Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134:117–145PubMedCrossRef Marin-Padilla M (1971) Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z Anat Entwicklungsgesch 134:117–145PubMedCrossRef
go back to reference Marin-Padilla M (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z Anat Entwicklungsgesch 136:125–142PubMedCrossRef Marin-Padilla M (1972) Prenatal ontogenetic history of the principal neurons of the neocortex of the cat (Felis domestica). A Golgi study. II. Developmental differences and their significances. Z Anat Entwicklungsgesch 136:125–142PubMedCrossRef
go back to reference Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790PubMedCrossRef Marin O, Rubenstein JL (2001) A long, remarkable journey: tangential migration in the telencephalon. Nat Rev Neurosci 2:780–790PubMedCrossRef
go back to reference Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(Suppl 1):i152–161PubMedCrossRef Martinez-Cerdeno V, Noctor SC, Kriegstein AR (2006) The role of intermediate progenitor cells in the evolutionary expansion of the cerebral cortex. Cereb Cortex 16(Suppl 1):i152–161PubMedCrossRef
go back to reference Maslinska D, Laure-Kamionowska M, Kaliszek A (1998) Morphological forms and localization of microglial cells in the developing human cerebellum. Folia Neuropathol 36:145–151PubMed Maslinska D, Laure-Kamionowska M, Kaliszek A (1998) Morphological forms and localization of microglial cells in the developing human cerebellum. Folia Neuropathol 36:145–151PubMed
go back to reference Masood F, Wadhwa S, Bijlani V (1990) Early development of visual cortex in human fetuses. Arch Ital Anat Embriol 95:1–10PubMed Masood F, Wadhwa S, Bijlani V (1990) Early development of visual cortex in human fetuses. Arch Ital Anat Embriol 95:1–10PubMed
go back to reference McConnell SK (1988) Development and decision-making in the mammalian cerebral cortex. Brain Res 472:1–23PubMed McConnell SK (1988) Development and decision-making in the mammalian cerebral cortex. Brain Res 472:1–23PubMed
go back to reference Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416PubMed Menezes JR, Luskin MB (1994) Expression of neuron-specific tubulin defines a novel population in the proliferative layers of the developing telencephalon. J Neurosci 14:5399–5416PubMed
go back to reference Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944PubMedCrossRef Meyer G, Wahle P (1999) The paleocortical ventricle is the origin of reelin-expressing neurons in the marginal zone of the foetal human neocortex. Eur J Neurosci 11:3937–3944PubMedCrossRef
go back to reference Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMed Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex. J Neurosci 20:1858–1868PubMed
go back to reference Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A (1998a) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518PubMedCrossRef Meyer G, Soria JM, Martinez-Galan JR, Martin-Clemente B, Fairen A (1998a) Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J Comp Neurol 397:493–518PubMedCrossRef
go back to reference Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741PubMedCrossRef Miyata T, Kawaguchi A, Okano H, Ogawa M (2001) Asymmetric inheritance of radial glial fibers by cortical neurons. Neuron 31:727–741PubMedCrossRef
go back to reference Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-diving and non surface-dividing cortical progenitor cells. Development 131(13): 3133–3145PubMedCrossRef Miyata T, Kawaguchi A, Saito K, Kawano M, Muto T, Ogawa M (2004) Asymmetric production of surface-diving and non surface-dividing cortical progenitor cells. Development 131(13): 3133–3145PubMedCrossRef
go back to reference Mollgard K, Schumacher U (1993) Immunohistochemical assessment of cellular proliferation in the developing human CNS using formalin-fixed paraffin-embedded material. J Neurosci Methods 46:191–196PubMedCrossRef Mollgard K, Schumacher U (1993) Immunohistochemical assessment of cellular proliferation in the developing human CNS using formalin-fixed paraffin-embedded material. J Neurosci Methods 46:191–196PubMedCrossRef
go back to reference Monier A., Evrard P., Gressens P., Verney C. (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J. Comp Neurol 499:565–582PubMedCrossRef Monier A., Evrard P., Gressens P., Verney C. (2006) Distribution and differentiation of microglia in the human encephalon during the first two trimesters of gestation. J. Comp Neurol 499:565–582PubMedCrossRef
go back to reference Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540PubMed Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540PubMed
go back to reference Nery S, Corbin JG, Fishell G (2003) Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb Cortex 13:895–903PubMedCrossRef Nery S, Corbin JG, Fishell G (2003) Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb Cortex 13:895–903PubMedCrossRef
go back to reference Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedCrossRef Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144PubMedCrossRef
go back to reference Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720PubMedCrossRef Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720PubMedCrossRef
go back to reference Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173PubMed Noctor SC, Flint AC, Weissman TA, Wong WS, Clinton BK, Kriegstein AR (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173PubMed
go back to reference Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318PubMedCrossRef Nowakowski RS, Lewin SB, Miller MW (1989) Bromodeoxyuridine immunohistochemical determination of the lengths of the cell cycle and the DNA-synthetic phase for an anatomically defined population. J Neurocytol 18:311–318PubMedCrossRef
go back to reference O’Rahilly RMF (1999) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, New York O’Rahilly RMF (1999) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, New York
go back to reference Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131PubMedCrossRef Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131PubMedCrossRef
go back to reference Perez Villegas EM, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas JL, Martinez S (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev Biol 216:98–113PubMedCrossRef Perez Villegas EM, Olivier C, Spassky N, Poncet C, Cochard P, Zalc B, Thomas JL, Martinez S (1999) Early specification of oligodendrocytes in the chick embryonic brain. Dev Biol 216:98–113PubMedCrossRef
go back to reference Polkinghorne report; Committee to Review the Guidance on the Research Use of Fetuses and Fetal Material. Review of the guidance on the research use of fetuses and fetal material (Her Majesty’s Stationery Office, London, 1989) Polkinghorne report; Committee to Review the Guidance on the Research Use of Fetuses and Fetal Material. Review of the guidance on the research use of fetuses and fetal material (Her Majesty’s Stationery Office, London, 1989)
go back to reference Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80PubMedCrossRef Qian X, Shen Q, Goderie SK, He W, Capela A, Davis AA, Temple S (2000) Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28:69–80PubMedCrossRef
go back to reference Quinn, J.C., Molinek, M., Martynoga, B.S., Zaki, P.A., Faedo, A., Bulfone, A., Hevner RF, West JD, Price DJ (2006) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Develop Biol. doi:10.1016.i.vdbio 2006.08.035 Quinn, J.C., Molinek, M., Martynoga, B.S., Zaki, P.A., Faedo, A., Bulfone, A., Hevner RF, West JD, Price DJ (2006) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Develop Biol. doi:10.1016.i.vdbio 2006.08.035
go back to reference Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol (Berl) 154:267–284CrossRef Raedler E, Raedler A (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat Embryol (Berl) 154:267–284CrossRef
go back to reference Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedCrossRef Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–83PubMedCrossRef
go back to reference Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427PubMedCrossRef Rakic P (1974) Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition. Science 183:425–427PubMedCrossRef
go back to reference Rakic S, Zecevic N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072–1083PubMedCrossRef Rakic S, Zecevic N (2003) Emerging complexity of layer I in human cerebral cortex. Cereb Cortex 13:1072–1083PubMedCrossRef
go back to reference Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938–949PubMedCrossRef Rezaie P, Dean A, Male D, Ulfig N (2005) Microglia in the cerebral wall of the human telencephalon at second trimester. Cereb Cortex 15:938–949PubMedCrossRef
go back to reference Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol (Berl) 151:285–307CrossRef Rickmann M, Chronwall BM, Wolff JR (1977) On the development of non-pyramidal neurons and axons outside the cortical plate: the early marginal zone as a pallial anlage. Anat Embryol (Berl) 151:285–307CrossRef
go back to reference Sauer FC (1935a) The cellular structure of the neural tube. J Comp Neurol 63:13–23CrossRef Sauer FC (1935a) The cellular structure of the neural tube. J Comp Neurol 63:13–23CrossRef
go back to reference Sauer FC, Walker BE (1959) Radiographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560PubMed Sauer FC, Walker BE (1959) Radiographic study of interkinetic nuclear migration in the neural tube. Proc Soc Exp Biol Med 101:557–560PubMed
go back to reference Simonati A, Tosati C, Rosso T, Piazzola E, Rizzuto N (1999) Cell proliferation and death: morphological evidence during corticogenesis in the developing human brain. Microsc Res Tech 45:341–352PubMedCrossRef Simonati A, Tosati C, Rosso T, Piazzola E, Rizzuto N (1999) Cell proliferation and death: morphological evidence during corticogenesis in the developing human brain. Microsc Res Tech 45:341–352PubMedCrossRef
go back to reference Smart IH (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91PubMed Smart IH (1973) Proliferative characteristics of the ependymal layer during the early development of the mouse neocortex: a pilot study based on recording the number, location and plane of cleavage of mitotic figures. J Anat 116:67–91PubMed
go back to reference Smart IH (1985) A localised growth zone in the wall of the developing mouse telencephalon. J Anat 140(Pt 3):397–402PubMed Smart IH (1985) A localised growth zone in the wall of the developing mouse telencephalon. J Anat 140(Pt 3):397–402PubMed
go back to reference Smart IH, Smart M (1977) The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. J Anat 123:515–525PubMed Smart IH, Smart M (1977) The location of nuclei of different labelling intensities in autoradiographs of the anterior forebrain of postnatal mice injected with [3H]thymidine on the eleventh and twelfth days post-conception. J Anat 123:515–525PubMed
go back to reference Smart IH, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134(Pt 3):415–442PubMed Smart IH, McSherry GM (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J Anat 134(Pt 3):415–442PubMed
go back to reference Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMedCrossRef Smart IH, Dehay C, Giroud P, Berland M, Kennedy H (2002) Unique morphological features of the proliferative zones and postmitotic compartments of the neural epithelium giving rise to striate and extrastriate cortex in the monkey. Cereb Cortex 12:37–53PubMedCrossRef
go back to reference Stewart GR, Pearlman AL (1987) Fibronectin-like immunoreactivity in the developing cerebral cortex. J Neurosci 7:3325–3333PubMed Stewart GR, Pearlman AL (1987) Fibronectin-like immunoreactivity in the developing cerebral cortex. J Neurosci 7:3325–3333PubMed
go back to reference Sturrock RR, Smart IH (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat 130:391–415PubMed Sturrock RR, Smart IH (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J Anat 130:391–415PubMed
go back to reference Suzuki H, Franz H, Yamamoto T, Iwasaki Y, Konno H (1988) Identification of the normal microglial population in human and rodent nervous tissue using lectin immunohistochemistry. Neuropathol Appl Neurobiol 14(3):221–227PubMed Suzuki H, Franz H, Yamamoto T, Iwasaki Y, Konno H (1988) Identification of the normal microglial population in human and rodent nervous tissue using lectin immunohistochemistry. Neuropathol Appl Neurobiol 14(3):221–227PubMed
go back to reference Takahashi T, Nowakowski RS, Caviness VS Jr (1993) Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J Neurosci 13:820–833PubMed Takahashi T, Nowakowski RS, Caviness VS Jr (1993) Cell cycle parameters and patterns of nuclear movement in the neocortical proliferative zone of the fetal mouse. J Neurosci 13:820–833PubMed
go back to reference Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068PubMed Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068PubMed
go back to reference Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60PubMedCrossRef Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60PubMedCrossRef
go back to reference Tiu SC (2001) Development of the human cortex. A neuroanatomical and histochemical study. MD thesis, Chinese University, Hong Kong Tiu SC (2001) Development of the human cortex. A neuroanatomical and histochemical study. MD thesis, Chinese University, Hong Kong
go back to reference Valverde F, De Carlos JA, Lopez-Mascaraque L (1995) Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb Cortex 5:483–493PubMedCrossRef Valverde F, De Carlos JA, Lopez-Mascaraque L (1995) Time of origin and early fate of preplate cells in the cerebral cortex of the rat. Cereb Cortex 5:483–493PubMedCrossRef
go back to reference Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559PubMedCrossRef Weissman T, Noctor SC, Clinton BK, Honig LS, Kriegstein AR (2003) Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration. Cereb Cortex 13:550–559PubMedCrossRef
go back to reference Wu CH, Wen CY, Shieh JY, Ling EA (1993) A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. J Anat 182(Pt 3):403–413PubMed Wu CH, Wen CY, Shieh JY, Ling EA (1993) A quantitative study of the differentiation of microglial cells in the developing cerebral cortex in rats. J Anat 182(Pt 3):403–413PubMed
go back to reference Wu SX, Nakamura K, Nakamura K, Kometani K, Minato N, Miyazaki S, Goebbels S, Nave KA, Kaneko T, Tamamaki N (2003) Pyramidal neuron production in the extraventricular zone of the mouse neocortex. In: 33rd Annual Society for Neuroscience. New Orleans, USA Wu SX, Nakamura K, Nakamura K, Kometani K, Minato N, Miyazaki S, Goebbels S, Nave KA, Kaneko T, Tamamaki N (2003) Pyramidal neuron production in the extraventricular zone of the mouse neocortex. In: 33rd Annual Society for Neuroscience. New Orleans, USA
go back to reference Zecevic N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131–149PubMedCrossRef Zecevic N (1993) Cellular composition of the telencephalic wall in human embryos. Early Hum Dev 32:131–149PubMedCrossRef
go back to reference Zecevic N (2004) Specific characteristic of radial glia in the human fetal telencephalon. Glia 48:27–35PubMedCrossRef Zecevic N (2004) Specific characteristic of radial glia in the human fetal telencephalon. Glia 48:27–35PubMedCrossRef
go back to reference Zecevic N, Milosevic A (1997) Initial development of gamma-aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495–506PubMedCrossRef Zecevic N, Milosevic A (1997) Initial development of gamma-aminobutyric acid immunoreactivity in the human cerebral cortex. J Comp Neurol 380:495–506PubMedCrossRef
go back to reference Zecevic N, Andjelkovic A, Matthieu JM, Tosic M (1998) Myelin basic protein immunoreactivity in the human embryonic CNS. Brain Res Dev Brain Res 105:97–108CrossRef Zecevic N, Andjelkovic A, Matthieu JM, Tosic M (1998) Myelin basic protein immunoreactivity in the human embryonic CNS. Brain Res Dev Brain Res 105:97–108CrossRef
go back to reference Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122PubMedCrossRef Zecevic N, Chen Y, Filipovic R (2005) Contributions of cortical subventricular zone to the development of the human cerebral cortex. J Comp Neurol 491:109–122PubMedCrossRef
Metadata
Title
Comparative analysis of extra-ventricular mitoses at early stages of cortical development in rat and human
Authors
Rosalind S. E. Carney
Irina Bystron
Guillermina López-Bendito
Zoltán Molnár
Publication date
01-07-2007
Publisher
Springer-Verlag
Published in
Brain Structure and Function / Issue 1/2007
Print ISSN: 1863-2653
Electronic ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-007-0142-4

Other articles of this Issue 1/2007

Brain Structure and Function 1/2007 Go to the issue

Editorial

Prologue