Skip to main content
Top
Published in: European Journal of Applied Physiology 8/2021

01-08-2021 | Original Article

Fifteen days of moderate normobaric hypoxia does not affect mitochondrial function, and related genes and proteins, in healthy men

Authors: Alessandra Ferri, Xu Yan, Jujiao Kuang, Cesare Granata, Rodrigo S. F. Oliveira, Christopher P. Hedges, Adriano E. Lima-Silva, Francois Billaut, David J. Bishop

Published in: European Journal of Applied Physiology | Issue 8/2021

Login to get access

Abstract

Purpose

To investigate within the one study potential molecular and cellular changes associated with mitochondrial biogenesis following 15 days of exposure to moderate hypoxia.

Methods

Eight males underwent a muscle biopsy before and after 15 days of hypoxia exposure (FiO2 = 0.140–0.154; ~ 2500–3200 m) in a hypoxic hotel. Mitochondrial respiration, citrate synthase (CS) activity, and the content of genes and proteins associated with mitochondrial biogenesis were investigated.

Results

Our main findings were the absence of significant changes in the mean values of CS activity, mitochondrial respiration in permeabilised fibers, or the content of genes and proteins associated with mitochondrial biogenesis, after 15 days of moderate normobaric hypoxia.

Conclusion

Our data provide evidence that 15 days of moderate normobaric hypoxia have negligible influence on skeletal muscle mitochondrial content and function, or genes and proteins content associated with mitochondrial biogenesis, in young recreationally active males. However, the increase in mitochondrial protease LON content after hypoxia exposure suggests the possibility of adaptations to optimise respiratory chain function under conditions of reduced O2 availability.
Literature
go back to reference Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012PubMed Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451:1008–1012PubMed
go back to reference Beidleman BA, Staab JE, Muza SR, Sawka MN (2017) Quantitative model of hematologic and plasma volume responses after ascent and acclimation to moderate to high altitude. Am J Physiol Regul Integr Comp Physiol 312:R265–R272PubMed Beidleman BA, Staab JE, Muza SR, Sawka MN (2017) Quantitative model of hematologic and plasma volume responses after ascent and acclimation to moderate to high altitude. Am J Physiol Regul Integr Comp Physiol 312:R265–R272PubMed
go back to reference Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616PubMed Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616PubMed
go back to reference Bota DA, Davis KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680PubMed Bota DA, Davis KJ (2002) Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 4:674–680PubMed
go back to reference Brooks JT, Elvidge GP, Glenny L, Gleadle JM, Liu C, Ragoussis J, Smith TG, Talbot NP, Winchester L, Maxwell PH, Robbins PA (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol 106:212–220PubMed Brooks JT, Elvidge GP, Glenny L, Gleadle JM, Liu C, Ragoussis J, Smith TG, Talbot NP, Winchester L, Maxwell PH, Robbins PA (2009) Variations within oxygen-regulated gene expression in humans. J Appl Physiol 106:212–220PubMed
go back to reference Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 72:1741–1748PubMed Butterfield GE, Gates J, Fleming S, Brooks GA, Sutton JR, Reeves JT (1992) Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol 72:1741–1748PubMed
go back to reference Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol 85:1448–1456PubMed Chapman RF, Stray-Gundersen J, Levine BD (1998) Individual variation in response to altitude training. J Appl Physiol 85:1448–1456PubMed
go back to reference Chicco AJ, Le CH, Gnaiger E, Dreyer HC, Muyskens JB, D’Alessandro A et al (2018) Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOmics. J Biol Chem 293:6659–6671PubMedPubMedCentral Chicco AJ, Le CH, Gnaiger E, Dreyer HC, Muyskens JB, D’Alessandro A et al (2018) Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: lessons from AltitudeOmics. J Biol Chem 293:6659–6671PubMedPubMedCentral
go back to reference Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart TM (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS ONE 8:e72457PubMedPubMedCentral Eaton SL, Roche SL, Llavero Hurtado M, Oldknow KJ, Farquharson C, Gillingwater TH, Wishart TM (2013) Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PLoS ONE 8:e72457PubMedPubMedCentral
go back to reference Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP (2013) Ventilation, oxidative stress, and nitric oxide in hypobaic versus normobaric hypoxia. Med Sci Sports Exerc 45:253–260PubMed Faiss R, Pialoux V, Sartori C, Faes C, Deriaz O, Millet GP (2013) Ventilation, oxidative stress, and nitric oxide in hypobaic versus normobaric hypoxia. Med Sci Sports Exerc 45:253–260PubMed
go back to reference Ferrus L, Commenges D, Gire J, Varene P (1984) Respiratory water loss as a function of ventilatory or environmental factors. Respir Physiol 56:11–20PubMed Ferrus L, Commenges D, Gire J, Varene P (1984) Respiratory water loss as a function of ventilatory or environmental factors. Respir Physiol 56:11–20PubMed
go back to reference Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimise efficiency of respiration in hypoxic cells. Cell 129:111–122PubMed Fukuda R, Zhang H, Kim J, Shimoda L, Dang CV, Semenza GL (2007) HIF-1 regulates cytochrome oxidase subunits to optimise efficiency of respiration in hypoxic cells. Cell 129:111–122PubMed
go back to reference Fusch C, Gfrorer W, Koch C, Thomas A, Grunert A, Moeller H (1996) Water turnover and body composition during long-term exposure to high altitude (4900–7600 m). J Appl Physiol 80:1118–1125PubMed Fusch C, Gfrorer W, Koch C, Thomas A, Grunert A, Moeller H (1996) Water turnover and body composition during long-term exposure to high altitude (4900–7600 m). J Appl Physiol 80:1118–1125PubMed
go back to reference Green H, Sutton J, Cymerman A, Young P, Houston C (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66:2454–2461PubMed Green H, Sutton J, Cymerman A, Young P, Houston C (1989) Operation Everest II: adaptations in human skeletal muscle. J Appl Physiol 66:2454–2461PubMed
go back to reference Green HJ, Roy B, Grant S, Hughson R, Burnett M, Otto C, Pipe A, McKenzie D, Johnson M (2000) Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 89:1189–1197PubMed Green HJ, Roy B, Grant S, Hughson R, Burnett M, Otto C, Pipe A, McKenzie D, Johnson M (2000) Increases in submaximal cycling efficiency mediated by altitude acclimatization. J Appl Physiol 89:1189–1197PubMed
go back to reference Höchli D, Schneiter T, Ferretti G, Howald H, Claassen H, Moia C, Atchou G, Belleri M, Veicsteinas A, Hoppeler H (1995) Loss of muscle oxidative capacity after an extreme endurance run: the Paris-Dakar foot-race. Int J Sports Med 16:343–346PubMed Höchli D, Schneiter T, Ferretti G, Howald H, Claassen H, Moia C, Atchou G, Belleri M, Veicsteinas A, Hoppeler H (1995) Loss of muscle oxidative capacity after an extreme endurance run: the Paris-Dakar foot-race. Int J Sports Med 16:343–346PubMed
go back to reference Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) II. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11:S3–S9PubMed Hoppeler H, Kleinert E, Schlegel C, Claassen H, Howald H, Kayar SR, Cerretelli P (1990) II. Morphological adaptations of human skeletal muscle to chronic hypoxia. Int J Sports Med 11:S3–S9PubMed
go back to reference Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P (1990) III. Effects of chronic hypoxia on muscle enzyme activities. Int J Sports Med 11:S10–S14PubMed Howald H, Pette D, Simoneau JA, Uber A, Hoppeler H, Cerretelli P (1990) III. Effects of chronic hypoxia on muscle enzyme activities. Int J Sports Med 11:S10–S14PubMed
go back to reference Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild AK, Lundby C (2012) Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J 26:5192–5200PubMed Jacobs RA, Siebenmann C, Hug M, Toigo M, Meinild AK, Lundby C (2012) Twenty-eight days at 3454-m altitude diminishes respiratory capacity but enhances efficiency in human skeletal muscle mitochondria. FASEB J 26:5192–5200PubMed
go back to reference Jacobs RA, Boushel R, Wright-Paradis C, Calbet JA, Robach P, Gnaiger E, Lundby C (2013) Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol 98:245–255PubMed Jacobs RA, Boushel R, Wright-Paradis C, Calbet JA, Robach P, Gnaiger E, Lundby C (2013) Mitochondrial function in human skeletal muscle following high-altitude exposure. Exp Physiol 98:245–255PubMed
go back to reference Jacobs RA, Lundby AM, Fenk S, Gehrig S, Siebenmann C, Fluck D, Kirk N, Hilty MP, Lundby C (2016) Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol 594:1151–1166PubMed Jacobs RA, Lundby AM, Fenk S, Gehrig S, Siebenmann C, Fluck D, Kirk N, Hilty MP, Lundby C (2016) Twenty-eight days of exposure to 3454 m increases mitochondrial volume density in human skeletal muscle. J Physiol 594:1151–1166PubMed
go back to reference Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21:1297–1310PubMedPubMedCentral Koumenis C, Alarcon R, Hammond E, Sutphin P, Hoffman W, Murphy M, Derr J, Taya Y, Lowe SW, Kastan M (2001) Regulation of p53 by hypoxia: dissociation of transcriptional repression and apoptosis from p53-dependent transactivation. Mol Cell Biol 21:1297–1310PubMedPubMedCentral
go back to reference Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360PubMedPubMedCentral Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, Schroder HD, Boushel R, Helge JW, Dela F, Hey-Mogensen M (2012) Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol 590:3349–3360PubMedPubMedCentral
go back to reference Leverve X (1998) Metabolic and nutritional consequences of chronic hypoxia. Clin Nutr 17:241–251PubMed Leverve X (1998) Metabolic and nutritional consequences of chronic hypoxia. Clin Nutr 17:241–251PubMed
go back to reference Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MP, Murray AJ, Caudwell Xtreme Everest Research G (2012) Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 26:1431–1441PubMed Levett DZ, Radford EJ, Menassa DA, Graber EF, Morash AJ, Hoppeler H, Clarke K, Martin DS, Ferguson-Smith AC, Montgomery HE, Grocott MP, Murray AJ, Caudwell Xtreme Everest Research G (2012) Acclimatization of skeletal muscle mitochondria to high-altitude hypoxia during an ascent of Everest. FASEB J 26:1431–1441PubMed
go back to reference Levine M, Ensom MH (2001) Post hoc power analysis: an idea whose time has passed? Pharmacotherapy 21:405–409PubMed Levine M, Ensom MH (2001) Post hoc power analysis: an idea whose time has passed? Pharmacotherapy 21:405–409PubMed
go back to reference Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMed Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370PubMed
go back to reference Mizuno M, Savard GK, Areskog NH, Lundby C, Saltin B (2008) Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol 9:311–317PubMed Mizuno M, Savard GK, Areskog NH, Lundby C, Saltin B (2008) Skeletal muscle adaptations to prolonged exposure to extreme altitude: a role of physical activity? High Alt Med Biol 9:311–317PubMed
go back to reference Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58PubMed Pesta D, Gnaiger E (2012) High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol Biol 810:25–58PubMed
go back to reference Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA, Iannone A, Cossarizza A (2016) Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta 1857:1300–1306PubMed Pinti M, Gibellini L, Nasi M, De Biasi S, Bortolotti CA, Iannone A, Cossarizza A (2016) Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta 1857:1300–1306PubMed
go back to reference Pugh LGCE (1964) Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500 m). J Physiol 170:344–354PubMedPubMedCentral Pugh LGCE (1964) Blood volume and haemoglobin concentration at altitudes above 18,000 ft. (5500 m). J Physiol 170:344–354PubMedPubMedCentral
go back to reference Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMed Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90PubMed
go back to reference Saleem A, Carter HN, Iqbal S, Hood DA (2011) Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev 39:199–205PubMed Saleem A, Carter HN, Iqbal S, Hood DA (2011) Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev 39:199–205PubMed
go back to reference Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31PubMed Scheffler IE (2001) A century of mitochondrial research: achievements and perspectives. Mitochondrion 1:3–31PubMed
go back to reference Schlittler M, Gatterer H, Turner R, Regli IB, Woyke S, Strapazzon G et al (2021) J Physiol 599:1083–1096PubMed Schlittler M, Gatterer H, Turner R, Regli IB, Woyke S, Strapazzon G et al (2021) J Physiol 599:1083–1096PubMed
go back to reference Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 207:cm8 Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 207:cm8
go back to reference Sen N, Satija YK, Das S (2011) PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 44:621–634PubMed Sen N, Satija YK, Das S (2011) PGC-1α, a key modulator of p53, promotes cell survival upon metabolic stress. Mol Cell 44:621–634PubMed
go back to reference Siebenmann C, Robach P, Lundby C (2017) Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol 123:957–966PubMed Siebenmann C, Robach P, Lundby C (2017) Regulation of blood volume in lowlanders exposed to high altitude. J Appl Physiol 123:957–966PubMed
go back to reference Toledo FG, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB, Kelley DE (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increase in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994PubMed Toledo FG, Menshikova EV, Azuma K, Radikova Z, Kelley CA, Ritov VB, Kelley DE (2008) Mitochondrial capacity in skeletal muscle is not stimulated by weight loss despite increase in insulin action and decreases in intramyocellular lipid content. Diabetes 57:987–994PubMed
go back to reference Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Aspects Med 47–48:76–89PubMed Waypa GB, Smith KA, Schumacker PT (2016) O2 sensing, mitochondria and ROS signaling: the fog is lifting. Mol Aspects Med 47–48:76–89PubMed
go back to reference Weil JV (2003) Variation in human ventilatory control-genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135:239–246PubMed Weil JV (2003) Variation in human ventilatory control-genetic influence on the hypoxic ventilatory response. Respir Physiol Neurobiol 135:239–246PubMed
go back to reference Westerterp KR, Meijer EP, Rubbens M, Robach P, Richlet JP (2000) Operation Everest III: energy and water balance. Pflugers Arch- Eur J Physiol 439:483–488 Westerterp KR, Meijer EP, Rubbens M, Robach P, Richlet JP (2000) Operation Everest III: energy and water balance. Pflugers Arch- Eur J Physiol 439:483–488
go back to reference Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG (2017) Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. IJSNEM 26:83–90 Woods AL, Sharma AP, Garvican-Lewis LA, Saunders PU, Rice AJ, Thompson KG (2017) Four weeks of classical altitude training increases resting metabolic rate in highly trained middle-distance runners. IJSNEM 26:83–90
go back to reference Young AJ, Karl JP, Berryman CE, Montain SJ, Beidleman BA, Pasiakos SM (2019) Variability in human plasma volume responses during altitude sojourn. Physiol Rep 7:e14051PubMedPubMedCentral Young AJ, Karl JP, Berryman CE, Montain SJ, Beidleman BA, Pasiakos SM (2019) Variability in human plasma volume responses during altitude sojourn. Physiol Rep 7:e14051PubMedPubMedCentral
go back to reference Zhao Y, Wang M-Y, Hao K, Chen X-Q, Du J-Z (2013) CRHR1 mediates p53 transcription induced by high altitude hypoxia through ERK 1/2 signaling in rat hepatic cells. Peptides 44:8–14PubMed Zhao Y, Wang M-Y, Hao K, Chen X-Q, Du J-Z (2013) CRHR1 mediates p53 transcription induced by high altitude hypoxia through ERK 1/2 signaling in rat hepatic cells. Peptides 44:8–14PubMed
Metadata
Title
Fifteen days of moderate normobaric hypoxia does not affect mitochondrial function, and related genes and proteins, in healthy men
Authors
Alessandra Ferri
Xu Yan
Jujiao Kuang
Cesare Granata
Rodrigo S. F. Oliveira
Christopher P. Hedges
Adriano E. Lima-Silva
Francois Billaut
David J. Bishop
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 8/2021
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-021-04706-4

Other articles of this Issue 8/2021

European Journal of Applied Physiology 8/2021 Go to the issue