Skip to main content
Top
Published in: European Journal of Applied Physiology 8/2016

Open Access 01-08-2016 | Original Article

Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals

Authors: Conor W. Taylor, Stephen A. Ingham, Julie E. A. Hunt, Neil R. W. Martin, Jamie S. M. Pringle, Richard A. Ferguson

Published in: European Journal of Applied Physiology | Issue 8/2016

Login to get access

Abstract

Purpose

The effects of low-volume interval and continuous ‘all-out’ cycling, matched for total exercise duration, on mitochondrial and angiogenic cell signalling was investigated in trained individuals.

Methods

In a repeated measures design, 8 trained males (\(\dot{V}{\text{O}}_{{2{\text{peak}}}}\), 57 ± 7 ml kg−1 min−1) performed two cycling exercise protocols; interval (INT, 4 × 30 s maximal sprints interspersed by 4 min passive recovery) or continuous (CON, 2 min continuous maximal sprint). Muscle biopsies were obtained before, immediately after and 3 h post-exercise.

Results

Total work was 53 % greater (P = 0.01) in INT compared to CON (71.2 ± 7.3 vs. 46.3 ± 2.7 kJ, respectively). Phosphorylation of AMPKThr172 increased by a similar magnitude (P = 0.347) immediately post INT and CON (1.6 ± 0.2 and 1.3 ± 0.3 fold, respectively; P = 0.011), before returning to resting values at 3 h post-exercise. mRNA expression of PGC-1α (7.1 ± 2.1 vs. 5.5 ± 1.8 fold; P = 0.007), VEGF (3.5 ± 1.2 vs. 4.3 ± 1.8 fold; P = 0.02) and HIF-1α (2.0 ± 0.5 vs. 1.5 ± 0.3 fold; P = 0.04) increased at 3 h post-exercise in response to INT and CON, respectively; the magnitude of which were not different between protocols.

Conclusions

Despite differences in total work done, low-volume INT and CON ‘all-out’ cycling, matched for exercise duration, provides a similar stimulus for the induction of mitochondrial and angiogenic cell signalling pathways in trained skeletal muscle.
Literature
go back to reference Ameln H, Gustafsson T, Sundberg CJ et al (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011PubMed Ameln H, Gustafsson T, Sundberg CJ et al (2005) Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J 19:1009–1011PubMed
go back to reference Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886CrossRefPubMed Baar K, Wende AR, Jones TE et al (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16:1879–1886CrossRefPubMed
go back to reference Bartlett JD, Hwa Joo C, Jeong T-S et al (2012) Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol 112:1135–1143CrossRefPubMed Bartlett JD, Hwa Joo C, Jeong T-S et al (2012) Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol 112:1135–1143CrossRefPubMed
go back to reference Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80:876–884PubMed Bogdanis GC, Nevill ME, Boobis LH, Lakomy HK (1996) Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J Appl Physiol 80:876–884PubMed
go back to reference Burgomaster KA, Howarth KR, Phillips SM et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160CrossRefPubMed Burgomaster KA, Howarth KR, Phillips SM et al (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586:151–160CrossRefPubMed
go back to reference Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 106:21401–21406CrossRefPubMedPubMedCentral Chinsomboon J, Ruas J, Gupta RK et al (2009) The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle. Proc Natl Acad Sci USA 106:21401–21406CrossRefPubMedPubMedCentral
go back to reference Cochran AJR, Percival ME, Tricarico S et al (2014) Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol 99:782–791CrossRefPubMed Cochran AJR, Percival ME, Tricarico S et al (2014) Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Exp Physiol 99:782–791CrossRefPubMed
go back to reference Cocks M, Shaw CS, Shepherd SO et al (2013) Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591:641–656CrossRefPubMed Cocks M, Shaw CS, Shepherd SO et al (2013) Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol 591:641–656CrossRefPubMed
go back to reference Egan B, Carson BP, Garcia-Roves PM et al (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790CrossRefPubMedPubMedCentral Egan B, Carson BP, Garcia-Roves PM et al (2010) Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol 588:1779–1790CrossRefPubMedPubMedCentral
go back to reference Egginton S (2011) Physiological factors influencing capillary growth. Acta Physiol (Oxf) 202:225–239CrossRef Egginton S (2011) Physiological factors influencing capillary growth. Acta Physiol (Oxf) 202:225–239CrossRef
go back to reference Geng T, Li P, Okutsu M et al (2010) PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:C572–C579CrossRefPubMed Geng T, Li P, Okutsu M et al (2010) PGC-1alpha plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle. Am J Physiol Cell Physiol 298:C572–C579CrossRefPubMed
go back to reference Gibala MJ, Little JP, van Essen M et al (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575:901–911CrossRefPubMedPubMedCentral Gibala MJ, Little JP, van Essen M et al (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575:901–911CrossRefPubMedPubMedCentral
go back to reference Gibala MJ, McGee SL, Garnham AP et al (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 106:929–934CrossRefPubMed Gibala MJ, McGee SL, Garnham AP et al (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1alpha in human skeletal muscle. J Appl Physiol 106:929–934CrossRefPubMed
go back to reference Greenhaff PL, Nevill ME, Soderlund K et al (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478:149–155CrossRefPubMedPubMedCentral Greenhaff PL, Nevill ME, Soderlund K et al (1994) The metabolic responses of human type I and II muscle fibres during maximal treadmill sprinting. J Physiol 478:149–155CrossRefPubMedPubMedCentral
go back to reference Gustafsson T, Puntschart A, Kaijser L et al (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H685PubMed Gustafsson T, Puntschart A, Kaijser L et al (1999) Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am J Physiol 276:H679–H685PubMed
go back to reference Hargreaves M, McKenna MJ, Jenkins DG et al (1998) Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 84:1687–1691PubMed Hargreaves M, McKenna MJ, Jenkins DG et al (1998) Muscle metabolites and performance during high-intensity, intermittent exercise. J Appl Physiol 84:1687–1691PubMed
go back to reference Hellsten Y, Rufener N, Nielsen JJ et al (2008) Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 294:R975–R982CrossRefPubMed Hellsten Y, Rufener N, Nielsen JJ et al (2008) Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 294:R975–R982CrossRefPubMed
go back to reference Hoier B, Nordsborg N, Andersen S et al (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590:595–606CrossRefPubMed Hoier B, Nordsborg N, Andersen S et al (2012) Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590:595–606CrossRefPubMed
go back to reference Hoier B, Passos M, Bangsbo J, Hellsten Y (2013a) Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Exp Physiol 98:585–597CrossRefPubMed Hoier B, Passos M, Bangsbo J, Hellsten Y (2013a) Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Exp Physiol 98:585–597CrossRefPubMed
go back to reference Hoier B, Prats C, Qvortrup K et al (2013b) Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J 27:3496–3504CrossRefPubMed Hoier B, Prats C, Qvortrup K et al (2013b) Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle. FASEB J 27:3496–3504CrossRefPubMed
go back to reference Høier B, Rufener N, Bojsen-Møller J et al (2010) The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle B. Høier, N. Rufener, J. Bojsen-Møller, J. Bangsbo. Y Hellsten J Physiol 588:3833–3845CrossRef Høier B, Rufener N, Bojsen-Møller J et al (2010) The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle B. Høier, N. Rufener, J. Bojsen-Møller, J. Bangsbo. Y Hellsten J Physiol 588:3833–3845CrossRef
go back to reference Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022CrossRefPubMedPubMedCentral Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104:12017–12022CrossRefPubMedPubMedCentral
go back to reference Jensen L, Bangsbo J, Hellsten Y (2004a) Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol 2:571–582CrossRef Jensen L, Bangsbo J, Hellsten Y (2004a) Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol 2:571–582CrossRef
go back to reference Jensen L, Schjerling P, Hellsten Y (2004b) Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells. Angiogenesis 7:255–267CrossRefPubMed Jensen L, Schjerling P, Hellsten Y (2004b) Regulation of VEGF and bFGF mRNA expression and other proliferative compounds in skeletal muscle cells. Angiogenesis 7:255–267CrossRefPubMed
go back to reference Karatzaferi C, de Haan A, Ferguson RA et al (2001) Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Arch Eur J Physiol 442:467–474CrossRef Karatzaferi C, de Haan A, Ferguson RA et al (2001) Phosphocreatine and ATP content in human single muscle fibres before and after maximum dynamic exercise. Pflügers Arch Eur J Physiol 442:467–474CrossRef
go back to reference Lee J-W, Bae S-H, Jeong J-W et al (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12CrossRefPubMed Lee J-W, Bae S-H, Jeong J-W et al (2004) Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med 36:1–12CrossRefPubMed
go back to reference Lee-young RS, Canny BJ, Myers DE, Mcconell GK (2009) AMPK activation is fiber type specific in human skeletal muscle : effects of exercise and short-term exercise training. 283–289 Lee-young RS, Canny BJ, Myers DE, Mcconell GK (2009) AMPK activation is fiber type specific in human skeletal muscle : effects of exercise and short-term exercise training. 283–289
go back to reference Leick L, Hellsten Y, Fentz J et al (2009) PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab 297:E92–E103CrossRefPubMed Leick L, Hellsten Y, Fentz J et al (2009) PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab 297:E92–E103CrossRefPubMed
go back to reference Little JP, Safdar A, Cermak N et al (2010) Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R912–R917CrossRefPubMed Little JP, Safdar A, Cermak N et al (2010) Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 298:R912–R917CrossRefPubMed
go back to reference Little JP, Safdar A, Bishop D et al (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1{alpha} and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300:R1303–R1310CrossRefPubMed Little JP, Safdar A, Bishop D et al (2011) An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1{alpha} and activates mitochondrial biogenesis in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 300:R1303–R1310CrossRefPubMed
go back to reference Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMed
go back to reference Olfert IM, Howlett RA, Wagner PD, Breen EC (2010) Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol 299:R1059–R1067CrossRefPubMedPubMedCentral Olfert IM, Howlett RA, Wagner PD, Breen EC (2010) Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. Am J Physiol Regul Integr Comp Physiol 299:R1059–R1067CrossRefPubMedPubMedCentral
go back to reference Perry CGR, Lally J, Holloway GP et al (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810CrossRefPubMedPubMedCentral Perry CGR, Lally J, Holloway GP et al (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810CrossRefPubMedPubMedCentral
go back to reference Philp A, Hargreaves M, Baar K (2012) More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 302:E1343–E1351CrossRefPubMed Philp A, Hargreaves M, Baar K (2012) More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise. Am J Physiol Endocrinol Metab 302:E1343–E1351CrossRefPubMed
go back to reference Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814PubMed Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814PubMed
go back to reference Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1 gene in human skeletal muscle. J Physiol 546:851–858CrossRefPubMedPubMedCentral Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1 gene in human skeletal muscle. J Physiol 546:851–858CrossRefPubMedPubMedCentral
go back to reference Psilander N, Niklas P, Wang L et al (2010) Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise. Eur J Appl Physiol 110:597–606CrossRefPubMed Psilander N, Niklas P, Wang L et al (2010) Mitochondrial gene expression in elite cyclists: effects of high-intensity interval exercise. Eur J Appl Physiol 110:597–606CrossRefPubMed
go back to reference Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90CrossRefPubMed Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90CrossRefPubMed
go back to reference Puigserver P, Rhee J, Lin J et al (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol Cell 8:971–982CrossRefPubMed Puigserver P, Rhee J, Lin J et al (2001) Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol Cell 8:971–982CrossRefPubMed
go back to reference Rullman E, Rundqvist H, Wågsäter D et al (2007) A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102:2346–2351CrossRefPubMed Rullman E, Rundqvist H, Wågsäter D et al (2007) A single bout of exercise activates matrix metalloproteinase in human skeletal muscle. J Appl Physiol 102:2346–2351CrossRefPubMed
go back to reference Rullman E, Norrbom J, Stromberg A et al (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812CrossRefPubMed Rullman E, Norrbom J, Stromberg A et al (2009) Endurance exercise activates matrix metalloproteinases in human skeletal muscle. J Appl Physiol 106:804–812CrossRefPubMed
go back to reference Semenza GL (2006) Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 91:803–806CrossRefPubMed Semenza GL (2006) Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia-inducible factor 1. Exp Physiol 91:803–806CrossRefPubMed
go back to reference Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8 (discussion 8–14, 33–6) Semenza GL, Shimoda LA, Prabhakar NR (2006) Regulation of gene expression by HIF-1. Novartis Found Symp 272:2–8 (discussion 8–14, 33–6)
go back to reference Tobina T, Yoshioka K, Hirata A et al (2011) Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness 51:683–688PubMed Tobina T, Yoshioka K, Hirata A et al (2011) Peroxisomal proliferator-activated receptor gamma co-activator-1 alpha gene expression increases above the lactate threshold in human skeletal muscle. J Sports Med Phys Fitness 51:683–688PubMed
go back to reference Van den Steen PE, Dubois B, Nelissen I et al (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536CrossRefPubMed Van den Steen PE, Dubois B, Nelissen I et al (2002) Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol 37:375–536CrossRefPubMed
go back to reference Vogt M, Puntschart A, Geiser J et al (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182PubMed Vogt M, Puntschart A, Geiser J et al (2001) Molecular adaptations in human skeletal muscle to endurance training under simulated hypoxic conditions. J Appl Physiol 91:173–182PubMed
go back to reference Wojtaszewski JFP, MacDonald C, Nielsen JN et al (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822CrossRefPubMed Wojtaszewski JFP, MacDonald C, Nielsen JN et al (2003) Regulation of 5′AMP-activated protein kinase activity and substrate utilization in exercising human skeletal muscle. Am J Physiol Endocrinol Metab 284:E813–E822CrossRefPubMed
go back to reference Yeo WK, Paton CD, Garnham AP et al (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470CrossRefPubMed Yeo WK, Paton CD, Garnham AP et al (2008) Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol 105:1462–1470CrossRefPubMed
go back to reference Yeo WK, McGee SL, Carey AL et al (2010) Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol 95:351–358CrossRefPubMed Yeo WK, McGee SL, Carey AL et al (2010) Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol 95:351–358CrossRefPubMed
go back to reference Zoll J, Ponsot E, Dufour S et al (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol 100:1258–1266CrossRefPubMed Zoll J, Ponsot E, Dufour S et al (2006) Exercise training in normobaric hypoxia in endurance runners. III. Muscular adjustments of selected gene transcripts. J Appl Physiol 100:1258–1266CrossRefPubMed
Metadata
Title
Exercise duration-matched interval and continuous sprint cycling induce similar increases in AMPK phosphorylation, PGC-1α and VEGF mRNA expression in trained individuals
Authors
Conor W. Taylor
Stephen A. Ingham
Julie E. A. Hunt
Neil R. W. Martin
Jamie S. M. Pringle
Richard A. Ferguson
Publication date
01-08-2016
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 8/2016
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-016-3402-2

Other articles of this Issue 8/2016

European Journal of Applied Physiology 8/2016 Go to the issue