Skip to main content
Top
Published in: European Journal of Applied Physiology 6/2009

01-04-2009 | Original Article

Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement

Authors: Tara G. Potier, Caroline M. Alexander, Olivier R. Seynnes

Published in: European Journal of Applied Physiology | Issue 6/2009

Login to get access

Abstract

The aim was to determine whether eccentric strengthening changed the muscle architecture of human biceps femoris and consequently, knee range of motion. Twenty-two subjects were randomly assigned to control and experimental groups. The experimental group completed an eccentric strengthening programme for 8 weeks. Outcome measures included hamstring muscle strength (one repetition maximum), the passive knee extension test (PKE) (knee joint angle at which the onset of passive tension occurs), fascicle length (FL) and pennation angle (PA). One repetition maximum increased by 34% (P < 0.01), the PKE test revealed a 5% increase in joint range of motion (P = 0.01), FL increased by 34% (P = 0.01) and PA did not change (P = 0.38). This is the first report of an increase in FL in the biceps femoris following eccentric resistance training. In addition, the results might imply that this fascicle lengthening could lead to an increase in the range of motion of the knee. Clinical implications for rehabilitation and injury prevention are discussed.
Literature
go back to reference Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623PubMedCrossRef Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Magnusson SP, Halkjaer-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: changes in muscle architecture. J Physiol 534:613–623PubMedCrossRef
go back to reference Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575PubMedCrossRef Blazevich AJ, Cannavan D, Coleman DR, Horne S (2007) Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol 103:1565–1575PubMedCrossRef
go back to reference Brockett CL, Morgan DL, Proske U (2001) Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 33:783–790PubMed Brockett CL, Morgan DL, Proske U (2001) Human hamstring muscles adapt to eccentric exercise by changing optimum length. Med Sci Sports Exerc 33:783–790PubMed
go back to reference Burkett LN (1970) Causative factors in hamstring strains. Med Sci Sports 2:39–42PubMed Burkett LN (1970) Causative factors in hamstring strains. Med Sci Sports 2:39–42PubMed
go back to reference Butterfield TA, Herzog W (2006) The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Pflugers Arch 451:688–700PubMedCrossRef Butterfield TA, Herzog W (2006) The magnitude of muscle strain does not influence serial sarcomere number adaptations following eccentric exercise. Pflugers Arch 451:688–700PubMedCrossRef
go back to reference Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN (2001) In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 169:401–409PubMedCrossRef Chleboun GS, France AR, Crill MT, Braddock HK, Howell JN (2001) In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle. Cells Tissues Organs 169:401–409PubMedCrossRef
go back to reference Dadebo B, White J, George KP (2004) A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med 38:388–394PubMedCrossRef Dadebo B, White J, George KP (2004) A survey of flexibility training protocols and hamstring strains in professional football clubs in England. Br J Sports Med 38:388–394PubMedCrossRef
go back to reference Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89:578–586PubMedCrossRef Farthing JP, Chilibeck PD (2003) The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol 89:578–586PubMedCrossRef
go back to reference Gajdosik RL, Rieck MA, Sullivan DK, Wightman SE (1993) Comparison of four clinical tests for assessing hamstring muscle length. J Orthop Sports Phys Ther 18:614–618PubMed Gajdosik RL, Rieck MA, Sullivan DK, Wightman SE (1993) Comparison of four clinical tests for assessing hamstring muscle length. J Orthop Sports Phys Ther 18:614–618PubMed
go back to reference Goldspink DF, Cox VM, Smith SK, Eaves LA, Osbaldeston NJ, Lee DM, Mantle D (1995) Muscle growth in response to mechanical stimuli. Am J Physiol 268:E288–E297PubMed Goldspink DF, Cox VM, Smith SK, Eaves LA, Osbaldeston NJ, Lee DM, Mantle D (1995) Muscle growth in response to mechanical stimuli. Am J Physiol 268:E288–E297PubMed
go back to reference Kaminski TW, Wabbersen CV, Murphy RM (1998) Concentric versus enhanced eccentric hamstring strength training: clinical implications. J Athl Train 33:216–221PubMed Kaminski TW, Wabbersen CV, Murphy RM (1998) Concentric versus enhanced eccentric hamstring strength training: clinical implications. J Athl Train 33:216–221PubMed
go back to reference Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74:2740–2744PubMed Kawakami Y, Abe T, Fukunaga T (1993) Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J Appl Physiol 74:2740–2744PubMed
go back to reference Kilgallon M, Donnelly AE, Shafat A (2007) Progressive resistance training temporarily alters hamstring torque–angle relationship. Scand J Med Sci Sports 17:18–24PubMed Kilgallon M, Donnelly AE, Shafat A (2007) Progressive resistance training temporarily alters hamstring torque–angle relationship. Scand J Med Sci Sports 17:18–24PubMed
go back to reference Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380PubMedCrossRef Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380PubMedCrossRef
go back to reference Kubo K, Kanehisa H, Fukunaga T (2001) Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. J Physiol 536:649–655PubMedCrossRef Kubo K, Kanehisa H, Fukunaga T (2001) Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. J Physiol 536:649–655PubMedCrossRef
go back to reference Legner AB, Milner TE (2008) The effects of eccentric exercise on intrinsic and reflex stiffness in the human hand. Clin Biomech 15:574–582CrossRef Legner AB, Milner TE (2008) The effects of eccentric exercise on intrinsic and reflex stiffness in the human hand. Clin Biomech 15:574–582CrossRef
go back to reference Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666PubMedCrossRef Lieber RL, Friden J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666PubMedCrossRef
go back to reference Lynn R, Talbot JA, Morgan DL (1998) Differences in rat skeletal muscles after incline and decline running. J Appl Physiol 85:98–104PubMed Lynn R, Talbot JA, Morgan DL (1998) Differences in rat skeletal muscles after incline and decline running. J Appl Physiol 85:98–104PubMed
go back to reference Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512(Pt 2):603–614PubMedCrossRef Maganaris CN, Baltzopoulos V, Sargeant AJ (1998) In vivo measurements of the triceps surae complex architecture in man: implications for muscle function. J Physiol 512(Pt 2):603–614PubMedCrossRef
go back to reference Magnusson SP, Simonsen EB, Aagaard P, Kjaer M (1996a) Biomechanical responses to repeated stretches in human hamstring muscle in vivo. Am J Sports Med 24:622–628PubMedCrossRef Magnusson SP, Simonsen EB, Aagaard P, Kjaer M (1996a) Biomechanical responses to repeated stretches in human hamstring muscle in vivo. Am J Sports Med 24:622–628PubMedCrossRef
go back to reference Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996b) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(Pt 1):291–298PubMed Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M (1996b) A mechanism for altered flexibility in human skeletal muscle. J Physiol 497(Pt 1):291–298PubMed
go back to reference Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M (1996c) Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports 6:323–328PubMedCrossRef Magnusson SP, Simonsen EB, Dyhre-Poulsen P, Aagaard P, Mohr T, Kjaer M (1996c) Viscoelastic stress relaxation during static stretch in human skeletal muscle in the absence of EMG activity. Scand J Med Sci Sports 6:323–328PubMedCrossRef
go back to reference Maitland G (1986) Vertebral manipulations, 5th edn. Butterworth, London, pp 352–358 Maitland G (1986) Vertebral manipulations, 5th edn. Butterworth, London, pp 352–358
go back to reference McHugh MP, Connolly DA, Eston RG, Kremenic IJ, Nicholas SJ, Gleim GW (1999) The role of passive muscle stiffness in symptoms of exercise-induced muscle damage. Am J Sports Med 27:594–599PubMed McHugh MP, Connolly DA, Eston RG, Kremenic IJ, Nicholas SJ, Gleim GW (1999) The role of passive muscle stiffness in symptoms of exercise-induced muscle damage. Am J Sports Med 27:594–599PubMed
go back to reference Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol 87:2007–2015PubMed Morgan DL, Allen DG (1999) Early events in stretch-induced muscle damage. J Appl Physiol 87:2007–2015PubMed
go back to reference Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed Moritani T, deVries HA (1979) Neural factors versus hypertrophy in the time course of muscle strength gain. Am J Phys Med 58:115–130PubMed
go back to reference Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(Pt 1):287–297PubMed Narici MV, Binzoni T, Hiltbrand E, Fasel J, Terrier F, Cerretelli P (1996) In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. J Physiol 496(Pt 1):287–297PubMed
go back to reference Nelson RT, Bandy WD (2004) Eccentric training and static stretching improve hamstring flexibility of high school males. J Athl Train 39:254–258PubMed Nelson RT, Bandy WD (2004) Eccentric training and static stretching improve hamstring flexibility of high school males. J Athl Train 39:254–258PubMed
go back to reference Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89:675–689PubMedCrossRef Reeves ND, Narici MV, Maganaris CN (2004) In vivo human muscle structure and function: adaptations to resistance training in old age. Exp Physiol 89:675–689PubMedCrossRef
go back to reference Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373PubMedCrossRef Seynnes OR, de Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102:368–373PubMedCrossRef
go back to reference Warren G, Ingall C, Tabary C, Huet de la Tour E (2001) Excitation-contraction coupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev 29:82–87 Warren G, Ingall C, Tabary C, Huet de la Tour E (2001) Excitation-contraction coupling: major role in contraction-induced muscle injury. Exerc Sport Sci Rev 29:82–87
go back to reference Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179:125–141PubMedCrossRef Woodley SJ, Mercer SR (2005) Hamstring muscles: architecture and innervation. Cells Tissues Organs 179:125–141PubMedCrossRef
go back to reference Worrell T, Perrin D, Gansneder B, Gieck J (1991) Comparison of isokinetic strength and flexibility measures between injured and noninjured athletes. J Orthop Sports Phys Ther 13:118–125PubMed Worrell T, Perrin D, Gansneder B, Gieck J (1991) Comparison of isokinetic strength and flexibility measures between injured and noninjured athletes. J Orthop Sports Phys Ther 13:118–125PubMed
Metadata
Title
Effects of eccentric strength training on biceps femoris muscle architecture and knee joint range of movement
Authors
Tara G. Potier
Caroline M. Alexander
Olivier R. Seynnes
Publication date
01-04-2009
Publisher
Springer-Verlag
Published in
European Journal of Applied Physiology / Issue 6/2009
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-008-0980-7

Other articles of this Issue 6/2009

European Journal of Applied Physiology 6/2009 Go to the issue