Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017

01-01-2017 | Retinal Disorders

Variability of panretinal photocoagulation lesions across physicians and patients. Quantification of diameter and intensity variation

Authors: Mark Saeger, Jan Heckmann, Konstantine Purtskhvanidze, Amke Caliebe, Johann Roider, Stefan Koinzer

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

Photocoagulation lesion intensity relies on the judgement of retinal blanching. Lesions turn out variable due to observer-dependent judgement and time dependency of blanching. We investigated lesion variability per patient and per physician in clinical routine treatments.

Methods

In this observational clinical trial, different physicians performed panretinal photocoagulation for diabetic retinopathy. Study eyes received 20–30 study lesions at 20 ms (three physicians, nine eyes) and 200 ms (four physicians, 12 eyes) irradiation time (532 nm continuous wave photocoagulator, 300 μm spot size). Lesions were imaged after 1 hour with photography and optical coherence tomography (OCT). We measured lesion diameters in fundus and OCT images, and graded intensities according to a previously published six-step classifier.

Results

200-ms lesions were larger and more severe (568, 474–625 μm [median, IQR], predominantly class 6) than 20-ms lesions (397, 347–459 μm, predominantly classes 3–4). The impact of laser power was small compared to other factors. Lesion intensities and diameters in fundus and OCT images varied significantly between patients and between physicians. Median photographic lesion diameters varied by up to a factor of 1.61 (20 ms) or 1.5 (200 ms) respectively.

Conclusions

In this study, the treated area of retina varied by up to a factor of 1.612 = 2.59 for a given spot number. As clinical efficacy depends on the treated area, which is a function of lesion number by area per lesion, our results implicate poor control of the overall treatment effect if treatments are administered according to lesion number or spacing alone. Better ways of laser effect control should be sought.
Appendix
Available only for authorised users
Literature
1.
go back to reference Shah AM, Bressler NM, Jampol LM (2011) Does laser still have a role in the management of retinal vascular and neovascular diseases? Am J Ophthalmol 152:332–339CrossRefPubMed Shah AM, Bressler NM, Jampol LM (2011) Does laser still have a role in the management of retinal vascular and neovascular diseases? Am J Ophthalmol 152:332–339CrossRefPubMed
2.
go back to reference The Diabetic Retinopathy Study Research Group (1976) Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 81:383–396CrossRef The Diabetic Retinopathy Study Research Group (1976) Preliminary report on effects of photocoagulation therapy. Am J Ophthalmol 81:383–396CrossRef
3.
go back to reference Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98:766–785CrossRef Early Treatment Diabetic Retinopathy Study Research Group (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Ophthalmology 98:766–785CrossRef
4.
go back to reference The Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: the second report of Diabetic Retinopathy Study findings. Ophthalmology 85:82–106CrossRef The Diabetic Retinopathy Study Research Group (1978) Photocoagulation treatment of proliferative diabetic retinopathy: the second report of Diabetic Retinopathy Study findings. Ophthalmology 85:82–106CrossRef
5.
go back to reference Bandello F, Brancato R, Menchini U, Virgili G, Lanzetta P, Ferrari E, Incorvaia C (2001) Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CPRP) in proliferative diabetic retinopathy. Semin Ophthalmol 16:12–18CrossRefPubMed Bandello F, Brancato R, Menchini U, Virgili G, Lanzetta P, Ferrari E, Incorvaia C (2001) Light panretinal photocoagulation (LPRP) versus classic panretinal photocoagulation (CPRP) in proliferative diabetic retinopathy. Semin Ophthalmol 16:12–18CrossRefPubMed
6.
go back to reference Luttrull JK, Musch DC, Spink CA (2008) Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye 22:607–612CrossRefPubMed Luttrull JK, Musch DC, Spink CA (2008) Subthreshold diode micropulse panretinal photocoagulation for proliferative diabetic retinopathy. Eye 22:607–612CrossRefPubMed
7.
go back to reference Muqit MMK, Marcellino GR, Henson DB, Fenerty CH, Stanga PE (2011) Randomized clinical trial to evaluate the effects of Pascal panretinal photocoagulation on macular nerve fibre layer: Manchester Pascal Study report 3. Retina 31:1699–1707CrossRefPubMed Muqit MMK, Marcellino GR, Henson DB, Fenerty CH, Stanga PE (2011) Randomized clinical trial to evaluate the effects of Pascal panretinal photocoagulation on macular nerve fibre layer: Manchester Pascal Study report 3. Retina 31:1699–1707CrossRefPubMed
8.
go back to reference Palanker D, Lavinsky D, Blumenkranz MS, Marcellino G (2011) The impact of pulse duration and burn grade on size of retinal photocoagulation lesion: implications for pattern density. Retina 31:1664–1669CrossRefPubMed Palanker D, Lavinsky D, Blumenkranz MS, Marcellino G (2011) The impact of pulse duration and burn grade on size of retinal photocoagulation lesion: implications for pattern density. Retina 31:1664–1669CrossRefPubMed
9.
go back to reference Lavinsky D, Cardillo JA, Melo LAS Jr, Dare A, Farah ME, Belfort R Jr (2011) Randomized clinical trial evaluating metdrs versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci 52:4314–4323CrossRefPubMed Lavinsky D, Cardillo JA, Melo LAS Jr, Dare A, Farah ME, Belfort R Jr (2011) Randomized clinical trial evaluating metdrs versus normal or high-density micropulse photocoagulation for diabetic macular edema. Invest Ophthalmol Vis Sci 52:4314–4323CrossRefPubMed
10.
go back to reference Muqit MMK, Marcellino GR, Henson DB, Young LB, Turner GS, Stanga PE (2011) Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: Manchester Pascal Study report 4. Eye 25:1447–1456CrossRefPubMedPubMedCentral Muqit MMK, Marcellino GR, Henson DB, Young LB, Turner GS, Stanga PE (2011) Pascal panretinal laser ablation and regression analysis in proliferative diabetic retinopathy: Manchester Pascal Study report 4. Eye 25:1447–1456CrossRefPubMedPubMedCentral
11.
go back to reference Reddy VM, Zamora RL, Olk RJ (1995) Quantitation of retinal ablation in proliferative diabetic retinopathy. Am J Ophthalmol 119:760–766CrossRefPubMed Reddy VM, Zamora RL, Olk RJ (1995) Quantitation of retinal ablation in proliferative diabetic retinopathy. Am J Ophthalmol 119:760–766CrossRefPubMed
12.
go back to reference Jain A, Blumenkranz MS, Paulus Y, Wiltberger MW, Andersen DE, Huie P, Palanker D (2008) Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch Ophthalmol 126:78–85CrossRefPubMed Jain A, Blumenkranz MS, Paulus Y, Wiltberger MW, Andersen DE, Huie P, Palanker D (2008) Effect of pulse duration on size and character of the lesion in retinal photocoagulation. Arch Ophthalmol 126:78–85CrossRefPubMed
13.
go back to reference Koinzer S, Schlott K, Portz L, Ptaszynski L, Baade A, Bever M, Saeger M, Caliebe A, Denner R, Birngruber R, Brinkmann R, Roider J (2012) Correlation of temperature rise and optical coherence tomography characteristics in patient retinal photocoagulation. J Biophotonics 5:889–902CrossRefPubMed Koinzer S, Schlott K, Portz L, Ptaszynski L, Baade A, Bever M, Saeger M, Caliebe A, Denner R, Birngruber R, Brinkmann R, Roider J (2012) Correlation of temperature rise and optical coherence tomography characteristics in patient retinal photocoagulation. J Biophotonics 5:889–902CrossRefPubMed
14.
go back to reference Weinberg W, Gabel V-P, Birngruber R, Lorenz B, Müller W (1981) Time sequence of the white hue correlated with the extent of damage in photocoagulation of the retina. Ber Dtsch Ophthalmol Ges 78:603–606 Weinberg W, Gabel V-P, Birngruber R, Lorenz B, Müller W (1981) Time sequence of the white hue correlated with the extent of damage in photocoagulation of the retina. Ber Dtsch Ophthalmol Ges 78:603–606
15.
go back to reference Koinzer S, Schlott K, Ptaszynski L, Bever M, Kleemann S, Saeger M, Baade A, Caliebe A, Miura Y, Birngruber R, Brinkmann R, Roider J (2012) Temperature controlled retinal photocoagulation — a step toward automated laser treatment. Invest Ophthalmol Vis Sci 53:3605–3614CrossRefPubMed Koinzer S, Schlott K, Ptaszynski L, Bever M, Kleemann S, Saeger M, Baade A, Caliebe A, Miura Y, Birngruber R, Brinkmann R, Roider J (2012) Temperature controlled retinal photocoagulation — a step toward automated laser treatment. Invest Ophthalmol Vis Sci 53:3605–3614CrossRefPubMed
16.
go back to reference Sramek C, Paulus Y, Nomoto H, Huie P, Brown J, Palanker D (2009) Dynamics of retinal photocoagulation and rupture. J Biomed Opt 14:034007CrossRefPubMed Sramek C, Paulus Y, Nomoto H, Huie P, Brown J, Palanker D (2009) Dynamics of retinal photocoagulation and rupture. J Biomed Opt 14:034007CrossRefPubMed
17.
go back to reference Birngruber R, Gabel VP, Hillenkamp F (1977) Fundus reflectometry: a step towards optimization of the retina photocoagulation. Mod Probl Ophthalmol 18:383–390PubMed Birngruber R, Gabel VP, Hillenkamp F (1977) Fundus reflectometry: a step towards optimization of the retina photocoagulation. Mod Probl Ophthalmol 18:383–390PubMed
18.
go back to reference Pomerantzeff O, Wang GJ, Pankratov M, Schneider J (1983) A method to predetermine the correct photocoagulation dosage. Arch Ophthalmol 101:949–953CrossRefPubMed Pomerantzeff O, Wang GJ, Pankratov M, Schneider J (1983) A method to predetermine the correct photocoagulation dosage. Arch Ophthalmol 101:949–953CrossRefPubMed
19.
go back to reference Jerath MR, Chundru R, Barrett SF, Rylander HG 3rd, Welch AJ (1993) Reflectance feedback control of photocoagulation in vivo. Arch Ophthalmol 111:531–534CrossRefPubMed Jerath MR, Chundru R, Barrett SF, Rylander HG 3rd, Welch AJ (1993) Reflectance feedback control of photocoagulation in vivo. Arch Ophthalmol 111:531–534CrossRefPubMed
20.
go back to reference Inderfurth J, Ferguson R, Frish M, Birngruber R (1994) Dynamic reflectometer for control of laser photocoagulation on the retina. Lasers Surg Med 15:54–61CrossRefPubMed Inderfurth J, Ferguson R, Frish M, Birngruber R (1994) Dynamic reflectometer for control of laser photocoagulation on the retina. Lasers Surg Med 15:54–61CrossRefPubMed
21.
go back to reference Schuele G, Elsner H, Framme C, Roider J, Birngruber R, Brinkmann R (2005) Optoacoustic real-time dosimetry for selective retina treatment. J Biomed Opt 10:064022CrossRefPubMed Schuele G, Elsner H, Framme C, Roider J, Birngruber R, Brinkmann R (2005) Optoacoustic real-time dosimetry for selective retina treatment. J Biomed Opt 10:064022CrossRefPubMed
22.
go back to reference Kandulla J, Elsner H, Birngruber R, Brinkmann R (2006) Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation. J Biomed Opt 11:041111CrossRefPubMed Kandulla J, Elsner H, Birngruber R, Brinkmann R (2006) Noninvasive optoacoustic online retinal temperature determination during continuous-wave laser irradiation. J Biomed Opt 11:041111CrossRefPubMed
23.
go back to reference Schlott K, Koinzer S, Ptaszynski L, Bever M, Baade A, Roider J, Birngruber R, Brinkmann R (2012) Automatic temperature controlled retinal photocoagulation. J Biomed Opt 17:061223CrossRefPubMed Schlott K, Koinzer S, Ptaszynski L, Bever M, Baade A, Roider J, Birngruber R, Brinkmann R (2012) Automatic temperature controlled retinal photocoagulation. J Biomed Opt 17:061223CrossRefPubMed
24.
go back to reference Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I (2014) Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 55:3432–3438CrossRefPubMed Chhablani J, Mathai A, Rani P, Gupta V, Arevalo JF, Kozak I (2014) Comparison of conventional pattern and novel navigated panretinal photocoagulation in proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 55:3432–3438CrossRefPubMed
25.
go back to reference Lavinsky D, Cardillo JA, Mandel Y, Huie P, Melo LA, Farah ME, Belfort R, Palanker D (2013) Restoration of retinal morphology and residual scarring after photocoagulation. Acta Ophthalmol 91:e315–e323CrossRefPubMed Lavinsky D, Cardillo JA, Mandel Y, Huie P, Melo LA, Farah ME, Belfort R, Palanker D (2013) Restoration of retinal morphology and residual scarring after photocoagulation. Acta Ophthalmol 91:e315–e323CrossRefPubMed
26.
go back to reference Kriechbaum K, Bolz M, Deak GG, Prager S, Scholda C, Schmidt-Erfurth U (2010) High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system. Ophthalmology 117:545–551CrossRefPubMed Kriechbaum K, Bolz M, Deak GG, Prager S, Scholda C, Schmidt-Erfurth U (2010) High-resolution imaging of the human retina in vivo after scatter photocoagulation treatment using a semiautomated laser system. Ophthalmology 117:545–551CrossRefPubMed
27.
go back to reference Koinzer S, Caliebe A, Portz L, Saeger M, Miura Y, Schlott K, Brinkmann R, Roider J (2014) Comprehensive detection, grading, and growth behaviour evaluation of subthreshold and low intensity photocoagulation lesions by optical coherence tomography and infrared image analysis. Biomed Res Int 2014:492679 Koinzer S, Caliebe A, Portz L, Saeger M, Miura Y, Schlott K, Brinkmann R, Roider J (2014) Comprehensive detection, grading, and growth behaviour evaluation of subthreshold and low intensity photocoagulation lesions by optical coherence tomography and infrared image analysis. Biomed Res Int 2014:492679
28.
go back to reference Koinzer S, Hesse C, Caliebe A, Saeger M, Baade A, Schlott K, Brinkmann R, Roider J (2013) Photocoagulation in rabbits: optical coherence tomographic lesion classification, wound healing reaction, and retinal temperatures. Lasers Surg Med 45:427–436CrossRefPubMed Koinzer S, Hesse C, Caliebe A, Saeger M, Baade A, Schlott K, Brinkmann R, Roider J (2013) Photocoagulation in rabbits: optical coherence tomographic lesion classification, wound healing reaction, and retinal temperatures. Lasers Surg Med 45:427–436CrossRefPubMed
29.
go back to reference Koinzer S, Saeger M, Hesse C, Portz L, Kleemann S, Schlott K, Brinkmann R, Roider J (2013) Correlation with OCT and histology of photocoagulation lesions in patients and rabbits. Acta Ophthalmol 91:e603–e611CrossRefPubMed Koinzer S, Saeger M, Hesse C, Portz L, Kleemann S, Schlott K, Brinkmann R, Roider J (2013) Correlation with OCT and histology of photocoagulation lesions in patients and rabbits. Acta Ophthalmol 91:e603–e611CrossRefPubMed
30.
go back to reference Staurenghi G, Sadda S, Chakravarthy U, Spaide R (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. Ophthalmology 121:1572–1578CrossRefPubMed Staurenghi G, Sadda S, Chakravarthy U, Spaide R (2014) Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography. Ophthalmology 121:1572–1578CrossRefPubMed
32.
go back to reference Pinheiro J, Bates D, Saikat D, Deepayan S, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-108. R Foundation for Statistical Computing, Vienna: https://www.r-project.org/. Assessed 10 June 2014 Pinheiro J, Bates D, Saikat D, Deepayan S, R Development Core Team (2013) nlme: linear and nonlinear mixed effects models. R package version 3.1-108. R Foundation for Statistical Computing, Vienna: https://​www.​r-project.​org/​. Assessed 10 June 2014
33.
go back to reference Koinzer S, Baade A, Schlott K, Hesse C, Caliebe A, Roider J, Brinkmann R (2015) Temperature-controlled retinal photocoagulation reliably generates uniform subvisible, mild, or moderate lesions. Transl Vis Sci Technol 4:9CrossRefPubMedPubMedCentral Koinzer S, Baade A, Schlott K, Hesse C, Caliebe A, Roider J, Brinkmann R (2015) Temperature-controlled retinal photocoagulation reliably generates uniform subvisible, mild, or moderate lesions. Transl Vis Sci Technol 4:9CrossRefPubMedPubMedCentral
34.
go back to reference Lavinsky D, Sramek C, Wang J, Huie P, Dalal R, Mandel Y, Palanker D (2014) Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 34:87–97CrossRefPubMed Lavinsky D, Sramek C, Wang J, Huie P, Dalal R, Mandel Y, Palanker D (2014) Subvisible retinal laser therapy: titration algorithm and tissue response. Retina 34:87–97CrossRefPubMed
35.
go back to reference Roider J, Liew SHM, Klatt C, Elsner H, Poerksen E, Hillenkamp J, Brinkmann R, Birngruber R (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248:1263–1272CrossRefPubMed Roider J, Liew SHM, Klatt C, Elsner H, Poerksen E, Hillenkamp J, Brinkmann R, Birngruber R (2010) Selective retina therapy (SRT) for clinically significant diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 248:1263–1272CrossRefPubMed
36.
go back to reference Brinkmann R, Koinzer S, Schlott K, Ptaszynski L, Bever M, Baade A, Luft S, Miura Y, Roider J, Birngruber R (2012) Real-time temperature determination during retinal photocoagulation on patients. J Biomed Opt 17:061219CrossRefPubMed Brinkmann R, Koinzer S, Schlott K, Ptaszynski L, Bever M, Baade A, Luft S, Miura Y, Roider J, Birngruber R (2012) Real-time temperature determination during retinal photocoagulation on patients. J Biomed Opt 17:061219CrossRefPubMed
37.
go back to reference Muqit MMK, Gray JCB, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, Turner GS, Dick AD, Stanga PE (2010) In vivo laser-tissue interactions and healing responses from 20- vs 100-millisecond pulse Pascal photocoagulation burns. Arch Ophthalmol 128:448–455CrossRefPubMed Muqit MMK, Gray JCB, Marcellino GR, Henson DB, Young LB, Patton N, Charles SJ, Turner GS, Dick AD, Stanga PE (2010) In vivo laser-tissue interactions and healing responses from 20- vs 100-millisecond pulse Pascal photocoagulation burns. Arch Ophthalmol 128:448–455CrossRefPubMed
Metadata
Title
Variability of panretinal photocoagulation lesions across physicians and patients. Quantification of diameter and intensity variation
Authors
Mark Saeger
Jan Heckmann
Konstantine Purtskhvanidze
Amke Caliebe
Johann Roider
Stefan Koinzer
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 1/2017
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-016-3416-9

Other articles of this Issue 1/2017

Graefe's Archive for Clinical and Experimental Ophthalmology 1/2017 Go to the issue